THE MECHANISMS OF MUSCLE HYPERTROPHY AND THEIR APPLICATION TO RESISTANCE TRAINING

madman

Super Moderator
ABSTRACT

Schoenfeld, BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res 24(10): 2857–2872, 2010—


The quest to increase lean body mass is widely pursued by those who lift weights. Research is lacking, however, as to the best approach for maximizing exercise-induced muscle growth. Bodybuilders generally train with moderate loads and fairly short rest intervals that induce high amounts of metabolic stress. Powerlifters, on the other hand, routinely train with high-intensity loads and lengthy rest periods between sets. Although both groups are known to display impressive muscularity, it is not clear which method is superior for hypertrophic gains. It has been shown that many factors mediate the hypertrophic process and that mechanical tension, muscle damage, and metabolic stress all can play a role in exercise-induced muscle growth. Therefore, the purpose of this paper is twofold: (a) to extensively review the literature as to the mechanisms of muscle hypertrophy and their application to exercise training and (b) to draw conclusions from the research as to the optimal protocol for maximizing muscle growth




PRACTICAL APPLICATIONS

Current research suggests that maximum gains in muscle hypertrophy are achieved by training regimens that produce significant metabolic stress while maintaining a moderate degree of muscle tension. A hypertrophy-oriented program should employ a repetition range of 6–12 reps per set with rest intervals of 60–90 seconds between sets. Exercises should be varied in a multiplanar, multi-angled fashion to ensure maximal stimulation of all muscle fibers. Multiple sets should be employed in the context of a split training routine to heighten the anabolic milieu. At least some of the sets should be carried out to the point of concentric muscular failure, perhaps alternating microcycles of sets to failure with those not performed to failure to minimize the potential for overtraining. Concentric repetitions should be performed at fast to moderate speeds (1–3 seconds) while eccentric repetitions should be performed at slightly slower speeds (2–4 seconds). Training should be periodized so that the hypertrophy phase culminates in a brief period of higher volume overreaching followed by a taper to allow for optimal super-compensation of muscle tissue.
 

Attachments

hCG Mixing Calculator

HCG Mixing Protocol Calculator

TRT Hormone Predictor Widget

TRT Hormone Predictor

Predict estradiol, DHT, and free testosterone levels based on total testosterone

⚠️ Medical Disclaimer

This tool provides predictions based on statistical models and should NOT replace professional medical advice. Always consult with your healthcare provider before making any changes to your TRT protocol.

ℹ️ Input Parameters

Normal range: 300-1000 ng/dL

Predicted Hormone Levels

Enter your total testosterone value to see predictions

Results will appear here after calculation

Understanding Your Hormones

Estradiol (E2)

A form of estrogen produced from testosterone. Important for bone health, mood, and libido. Too high can cause side effects; too low can affect well-being.

DHT

Dihydrotestosterone is a potent androgen derived from testosterone. Affects hair growth, prostate health, and masculinization effects.

Free Testosterone

The biologically active form of testosterone not bound to proteins. Directly available for cellular uptake and biological effects.

Scientific Reference

Lakshman KM, Kaplan B, Travison TG, Basaria S, Knapp PE, Singh AB, LaValley MP, Mazer NA, Bhasin S. The effects of injected testosterone dose and age on the conversion of testosterone to estradiol and dihydrotestosterone in young and older men. J Clin Endocrinol Metab. 2010 Aug;95(8):3955-64.

DOI: 10.1210/jc.2010-0102 | PMID: 20534765 | PMCID: PMC2913038

Beyond Testosterone Podcast

Online statistics

Members online
4
Guests online
138
Total visitors
142

Latest posts

Back
Top