madman
Super Moderator
High-Dose Vitamin B Improves Brain Metabolism and Blood Biomarkers of Oxidative Stress: A Randomized Control Trial
Abstract: A diet rich in B-group vitamins is essential for optimal body and brain function, and insufficient amounts of such vitamins have been associated with higher levels of neural inflammation and oxidative stress, as marked by increased blood plasma homocysteine. Neural biomarkers of oxidative stress quantified through proton magnetic spectroscopy (1H-MRS) are not well understood, and the relationship between such neural and blood biomarkers is seldom studied. The current study addresses this gap by investigating the direct effect of 6-month high-doseB-groupvitaminsupplementationonneuralandbloodbiomarkersofmetabolism. Usinga randomized, double-blind, placebo-controlled design, 32 healthy adults (20 female, 12 male) aged 30–65 years underwent blood tests (vitamin B6, vitamin B12, folate, and homocysteine levels) and 1H-MRS of the posterior cingulate cortex (PCC) and dorsolateral prefrontal cortex (DLPFC) before and after supplementation. Results confirmed the supplement was effective in increasing vitamin B6 and vitamin B12 levels and reducing homocysteine, whereas there was no change in folate levels. There were significant relationships between vitamin B6 and N-acetylaspartate (NAA), choline, and creatine, as well as between vitamin B12 and creatine (ps < 0.05), whereas NAA in the PCC increased, albeit not significantly (p > 0.05). Together these data provide preliminary evidence for the efficacy of high-dose B-group supplementation in reducing oxidative stress and inflammation through increasing oxidative metabolism. It may also promote myelination, cellular metabolism, and energy storage.
5. Conclusions
This study was the first to investigate the efficacy of high-dose B vitamin multivitamin supplementation in modulating the relationship between neural and blood biomarkers of oxidative stress. Blackmore’s® Executive B Stress Formula was shown to reduce blood markers for oxidative stress (homocysteine) and increase brain markers for oxidative metabolism and myelination, but not energy or cellular membrane metabolism. Increasing levels of blood high-dose B-group vitamins were also associated with increased neural metabolism. These findings suggest that high-dose B-group vitamin supplementation might be effective in reducing oxidative stress and inflammation through increasing oxidative metabolism, and may promote myelination, cellular metabolism, and energy storage. Together, these findings highlight the importance of B-group vitamins in the maintenance of brain health in healthy adults and may have important implications in the prevention and alleviation of disease and disability.
Abstract: A diet rich in B-group vitamins is essential for optimal body and brain function, and insufficient amounts of such vitamins have been associated with higher levels of neural inflammation and oxidative stress, as marked by increased blood plasma homocysteine. Neural biomarkers of oxidative stress quantified through proton magnetic spectroscopy (1H-MRS) are not well understood, and the relationship between such neural and blood biomarkers is seldom studied. The current study addresses this gap by investigating the direct effect of 6-month high-doseB-groupvitaminsupplementationonneuralandbloodbiomarkersofmetabolism. Usinga randomized, double-blind, placebo-controlled design, 32 healthy adults (20 female, 12 male) aged 30–65 years underwent blood tests (vitamin B6, vitamin B12, folate, and homocysteine levels) and 1H-MRS of the posterior cingulate cortex (PCC) and dorsolateral prefrontal cortex (DLPFC) before and after supplementation. Results confirmed the supplement was effective in increasing vitamin B6 and vitamin B12 levels and reducing homocysteine, whereas there was no change in folate levels. There were significant relationships between vitamin B6 and N-acetylaspartate (NAA), choline, and creatine, as well as between vitamin B12 and creatine (ps < 0.05), whereas NAA in the PCC increased, albeit not significantly (p > 0.05). Together these data provide preliminary evidence for the efficacy of high-dose B-group supplementation in reducing oxidative stress and inflammation through increasing oxidative metabolism. It may also promote myelination, cellular metabolism, and energy storage.
5. Conclusions
This study was the first to investigate the efficacy of high-dose B vitamin multivitamin supplementation in modulating the relationship between neural and blood biomarkers of oxidative stress. Blackmore’s® Executive B Stress Formula was shown to reduce blood markers for oxidative stress (homocysteine) and increase brain markers for oxidative metabolism and myelination, but not energy or cellular membrane metabolism. Increasing levels of blood high-dose B-group vitamins were also associated with increased neural metabolism. These findings suggest that high-dose B-group vitamin supplementation might be effective in reducing oxidative stress and inflammation through increasing oxidative metabolism, and may promote myelination, cellular metabolism, and energy storage. Together, these findings highlight the importance of B-group vitamins in the maintenance of brain health in healthy adults and may have important implications in the prevention and alleviation of disease and disability.