madman
Super Moderator
Abstract
Exposure to hydraulic fracturing fluid in drinking water increases the risk of many adverse health outcomes. Unfortunately, most individuals and researchers are unaware of the health risks posed by a particular well due to the diversity of chemical ingredients used across sites. We constructed WellExplorer (WellExplorer), an interactive tool for researchers and community members to use for retrieving information regarding the hormonal, testosterone, and estrogen modulators located at each well. We found that wells in Alabama use a disproportionately high number of ingredients targeting estrogen pathways, while Illinois, Ohio, and Pennsylvania use a disproportionately high number of ingredients targeting testosterone pathways. Researchers can utilize WellExplorer to study health outcomes related to exposure to fracturing chemicals in their population-based cohorts. Community members can use this resource to search their home or work locations (e.g. town or zip code) to determine proximity between where they live or work and specific hormonal exposures.
Introduction
Hydraulic fracturing is a technique used to release the oil or gas held within naturally occurring pockets of shale or other dense rock often contained deep within the earth (Figure 1) (1). While the first patents related to the hydraulic fracturing process date back to 1968 (2), a major increase in hydraulic fracturing, or ‘fracking’ as it is commonly called occurred starting in the early 2000s, with some reporting a 10-fold increase between 2000 and 2015 (3, 4). Following this explosion of growth in the hydraulic fracturing industry, initial reports began to suggest that earthquakes were correlated with fracking activity (5). These reports were later followed up by numerous studies pointing to increases in seismic activity that correlated with hydraulic fracturing fluid injections (6) that are related to the underlying fault lines that these injection wells are perturbing (7).
Implications of hydraulic fracturing fluid on human health
Important health implications exist for those living near hydraulic fracturing sites. Close proximity to hydraulic fracturing sites has been linked with increased hospital utilization (8), increased risk of preterm birth (9), and increases in congenital heart defects and possibly neural tube defects (10). These adverse health outcomes are likely due to the chemicals used in the fracking process. These chemical mixtures are known to affect processes involving development and reproduction (11). Therefore, knowing the specific chemicals used in hydraulic fracturing sites near a person’s home and whether they regulate various hormonal pathways, including testosterone and/or estrogen, is important for both researchers who may be studying health outcomes among these populations, but also for those living in the potentially affected communities who may be able to take action (e.g. water testing).
Overview of WellExplorer
The purpose of WellExplorer is 2-fold: (i) to integrate information on hormonal, estrogen, and testosterone pathways and the proteins that are targeted by chemicals used in the hydraulic fracturing fluid to enable both researchers and community members to readily access this information when studying health outcomes and (ii) to include information about well locations in an easy-to-use manner so that community members can search their own zip codes to locate hydraulic fracturing wells in close proximity to them (ranked by distance from entered zip code). Therefore, WellExplorer (http://www.wellexplorer.org/) is useful to both researchers studying health outcomes related to proximity to hydraulic fracturing wells and also to community members deciding what chemicals they should test for in their private water wells.
In conclusion, we have developed WellExplorer (http:// www.wellexplorer.org/), which contains information on hydraulic fracturing wells and also detailed information on the ingredients used in the hydraulic fracturing fluid. This includes whether the ingredient is a toxin, a food additive, known to target a hormonal pathway, known to target an estrogen pathway, or known to target a testosterone pathway. We also include specific information on the gene targeted by the ingredient, if that information is available. Use of WellExplorer enables two ends: (i) to integrate information on hormonal, estrogen, and testosterone pathways and genes that hydraulic fracturing fluid ingredients target so that researchers and community members can readily access this information when studying health outcomes and (ii) to include information about well locations in an easy-to-use manner so that community members can search their own zip codes to locate hydraulic fracturing wells in close proximity to them (ranked by distance from entered zip code). WellExplorer is useful to both researchers studying health outcomes related to proximity to hydraulic fracturing wells and also to community members deciding what chemicals they should test for in their private water wells. Researchers using WellExplorer can also search for specific gene names that they may be interested in to locate wells that are using ingredients targeting those genes. This could be very important for future research questions investigating health outcomes following exposure to hydraulic fracturing fluids.
Exposure to hydraulic fracturing fluid in drinking water increases the risk of many adverse health outcomes. Unfortunately, most individuals and researchers are unaware of the health risks posed by a particular well due to the diversity of chemical ingredients used across sites. We constructed WellExplorer (WellExplorer), an interactive tool for researchers and community members to use for retrieving information regarding the hormonal, testosterone, and estrogen modulators located at each well. We found that wells in Alabama use a disproportionately high number of ingredients targeting estrogen pathways, while Illinois, Ohio, and Pennsylvania use a disproportionately high number of ingredients targeting testosterone pathways. Researchers can utilize WellExplorer to study health outcomes related to exposure to fracturing chemicals in their population-based cohorts. Community members can use this resource to search their home or work locations (e.g. town or zip code) to determine proximity between where they live or work and specific hormonal exposures.
Introduction
Hydraulic fracturing is a technique used to release the oil or gas held within naturally occurring pockets of shale or other dense rock often contained deep within the earth (Figure 1) (1). While the first patents related to the hydraulic fracturing process date back to 1968 (2), a major increase in hydraulic fracturing, or ‘fracking’ as it is commonly called occurred starting in the early 2000s, with some reporting a 10-fold increase between 2000 and 2015 (3, 4). Following this explosion of growth in the hydraulic fracturing industry, initial reports began to suggest that earthquakes were correlated with fracking activity (5). These reports were later followed up by numerous studies pointing to increases in seismic activity that correlated with hydraulic fracturing fluid injections (6) that are related to the underlying fault lines that these injection wells are perturbing (7).
Implications of hydraulic fracturing fluid on human health
Important health implications exist for those living near hydraulic fracturing sites. Close proximity to hydraulic fracturing sites has been linked with increased hospital utilization (8), increased risk of preterm birth (9), and increases in congenital heart defects and possibly neural tube defects (10). These adverse health outcomes are likely due to the chemicals used in the fracking process. These chemical mixtures are known to affect processes involving development and reproduction (11). Therefore, knowing the specific chemicals used in hydraulic fracturing sites near a person’s home and whether they regulate various hormonal pathways, including testosterone and/or estrogen, is important for both researchers who may be studying health outcomes among these populations, but also for those living in the potentially affected communities who may be able to take action (e.g. water testing).
Overview of WellExplorer
The purpose of WellExplorer is 2-fold: (i) to integrate information on hormonal, estrogen, and testosterone pathways and the proteins that are targeted by chemicals used in the hydraulic fracturing fluid to enable both researchers and community members to readily access this information when studying health outcomes and (ii) to include information about well locations in an easy-to-use manner so that community members can search their own zip codes to locate hydraulic fracturing wells in close proximity to them (ranked by distance from entered zip code). Therefore, WellExplorer (http://www.wellexplorer.org/) is useful to both researchers studying health outcomes related to proximity to hydraulic fracturing wells and also to community members deciding what chemicals they should test for in their private water wells.
In conclusion, we have developed WellExplorer (http:// www.wellexplorer.org/), which contains information on hydraulic fracturing wells and also detailed information on the ingredients used in the hydraulic fracturing fluid. This includes whether the ingredient is a toxin, a food additive, known to target a hormonal pathway, known to target an estrogen pathway, or known to target a testosterone pathway. We also include specific information on the gene targeted by the ingredient, if that information is available. Use of WellExplorer enables two ends: (i) to integrate information on hormonal, estrogen, and testosterone pathways and genes that hydraulic fracturing fluid ingredients target so that researchers and community members can readily access this information when studying health outcomes and (ii) to include information about well locations in an easy-to-use manner so that community members can search their own zip codes to locate hydraulic fracturing wells in close proximity to them (ranked by distance from entered zip code). WellExplorer is useful to both researchers studying health outcomes related to proximity to hydraulic fracturing wells and also to community members deciding what chemicals they should test for in their private water wells. Researchers using WellExplorer can also search for specific gene names that they may be interested in to locate wells that are using ingredients targeting those genes. This could be very important for future research questions investigating health outcomes following exposure to hydraulic fracturing fluids.
Attachments
Last edited: