madman
Super Moderator
Abstract
Testosterone (T) has been suggested as a promising agent in the bone osteo integration when incorporated in a bioceramic/polymer combination for the local application.The objective of this study was to evaluate the activity of a testosterone composite of poly (lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and biphasic calcium phosphate (BCP) as a strategy for enhancing its osteogenic effect and to evaluate tissue response to the composite implantation. PLGA/PCL/BCP/T and PLGA/PCL/BCP composites were prepared and characterized using thermal analysis. Composite morphology and surface characteristics were assessed by SEM and EDS. The evaluations of in vitro effects of testosterone composite on osteoblasts viability, alkaline phosphatase activity, collagen production, osteocalcin concentration, quantification of mineralization, and nitric oxide concentration, after 7, 14, and 21 days. Testosterone was successfully incorporated and composites showed a homogeneously distributed porous structure.The PLGA/PCL/BCP/T composite had a stimulatory effect on osteoblastic activity on the parameters evaluated, except to nitric oxide production. After 60 days, the PLGA/PCL/BCP/T composite showed no chronic inflammatory infiltrate, whereas the PLGA/PCL/BCP composite showed mild chronic inflammatory infiltrate. Angiogenesis, cellular adsorption, and fibrous deposit were observed on the surfaces of implanted composites. The composites in combination with testosterone can be exploited to investigate the use of this scaffold for bone integration.
Conclusions
The data from the present study demonstrated that the testosterone in combination with polymeric composite is able to increase osteoblast viability with enhanced production of extracellular matrix and mineralization. Additionally, this scaffold was biocompatible causing cellular adhesion and angiogenesis, which are crucial to increasing bone regeneration and can be exploited to investigate this promising scaffold for bone integration.
Testosterone (T) has been suggested as a promising agent in the bone osteo integration when incorporated in a bioceramic/polymer combination for the local application.The objective of this study was to evaluate the activity of a testosterone composite of poly (lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and biphasic calcium phosphate (BCP) as a strategy for enhancing its osteogenic effect and to evaluate tissue response to the composite implantation. PLGA/PCL/BCP/T and PLGA/PCL/BCP composites were prepared and characterized using thermal analysis. Composite morphology and surface characteristics were assessed by SEM and EDS. The evaluations of in vitro effects of testosterone composite on osteoblasts viability, alkaline phosphatase activity, collagen production, osteocalcin concentration, quantification of mineralization, and nitric oxide concentration, after 7, 14, and 21 days. Testosterone was successfully incorporated and composites showed a homogeneously distributed porous structure.The PLGA/PCL/BCP/T composite had a stimulatory effect on osteoblastic activity on the parameters evaluated, except to nitric oxide production. After 60 days, the PLGA/PCL/BCP/T composite showed no chronic inflammatory infiltrate, whereas the PLGA/PCL/BCP composite showed mild chronic inflammatory infiltrate. Angiogenesis, cellular adsorption, and fibrous deposit were observed on the surfaces of implanted composites. The composites in combination with testosterone can be exploited to investigate the use of this scaffold for bone integration.
Conclusions
The data from the present study demonstrated that the testosterone in combination with polymeric composite is able to increase osteoblast viability with enhanced production of extracellular matrix and mineralization. Additionally, this scaffold was biocompatible causing cellular adhesion and angiogenesis, which are crucial to increasing bone regeneration and can be exploited to investigate this promising scaffold for bone integration.
Attachments
-
[email protected]1.4 MB · Views: 91