madman
Super Moderator
ABSTRACT
This consensus statement is an update of the 1987 American College of Sports Medicine (ACSM) position stand on the use of anabolic-androgenic steroids (AAS). Substantial data have been collected since the previous position stand, and AAS use patterns have changed significantly. The ACSM acknowledges that lawful and ethical therapeutic use of AAS is now an accepted mainstream treatment for several clinical disorders; however, there is increased recognition that AAS is commonly used illicitly to enhance performance and appearance in several segments of the population, including competitive athletes. The illicit use of AAS by competitive athletes is contrary to the rules and ethics of many sport governing bodies. Thus, the ACSM deplores the illicit use of AAS for athletic and recreational purposes. This consensus statement provides a brief history of AAS use, an update on the science of how we now understand AAS to be working metabolically/biochemically, potential side effects, the prevalence of use among athletes, and the use of AAS in clinical scenarios.
SYNOPSIS
This consensus statement is an update of the previous position stand from the American College of Sports Medicine (ACSM), published in 1987 (1). Since then, a substantial amount of scientific data on anabolic-androgenic steroids (AAS) has emerged and the circumstances of AAS use have evolved in the athletic, recreational, and clinical communities. The objective of this consensus statement is to provide readers with a brief summary of the current evidence and extend the recommendations provided in the 1987 document (1). Key topics discussed are the brief history of AAS, epidemiology, methods, and patterns of AAS use, androgen physiology and ergogenic effects, side effects of AAS, and clinical uses of AAS (see Box 1). The writing group used the rating system of the National Heart Lung and Blood Institute (Table 1) and a consensus approach to synthesize the available evidence from clinical trials and case reports, narrative and systematic reviews, and meta-analyses (3). The recommendations represent the consensus of the writing panel, the ACSM, and incorporate guidance from other professional organizations with expertise in the area.
INTRODUCTION
Anabolic-androgenic steroids are drugs chemically and pharmacologically related to testosterone (T) that promote muscle growth and are not estrogens, progestins, or corticosteroids. An androgen is any natural or synthetic steroid hormone capable of promoting the development of male primary and secondary sexual characteristics via binding to androgen receptors at the tissue level. The term anabolic describes a hormone or other substance capable of enhancing the growth of somatic tissue, such as skeletal muscle and bone. In a sport-related setting, this is typically used to describe the enhancement of skeletal muscle. Table 2 presents nomenclature associated with AAS. In the United States, AAS are classified as Schedule III controlled substances (5). Although AAS has a legitimate medicinal use, nontherapeutic use among athletes and recreationally active young men and women is performed to improve strength, power, increase muscle mass, and improve appearance. Athletic and recreational (i.e., non-competitive) use of AAS has been widespread over the last 50 yr, creating considerable interest by the scientific and medical communities, as well as sport governing bodies, in examining the potential medical, legal, and ethical issues surrounding the use of these substances. All major national and international sports organizations have banned the illicit use of AAS by athletes.
*HISTORICAL PERSPECTIVES
*EPIDEMIOLOGY OF AAS USE
*METHODS/PATTERNS OF AAS USE
*ANDROGEN PHYSIOLOGY
Testosterone is the principal androgen and has both androgenic (masculinizing) and anabolic (tissue building) effects. Testosterone is synthesized from cholesterol via the Δ-4 or Δ-5 pathways through the sequential action of several enzymes (Fig. 2). In men, >95% of T is synthesized in the Leydig cells of the testes (with smaller adrenal contributions) under control of the hypothalamic-anterior pituitary-gonadal axis where gonadotropin-releasing hormone stimulates the release of luteinizing hormone (LH). Healthy men produce ~4 to 9 mg of T per day (10–35 nmol·L−1 ) whereas women have approximately 0.5 to 2.3 nmol·L−1 of circulating T in the blood (5). Gonadotropin-releasing hormone function is under the control of hypothalamic neuropeptides, such as kisspeptins, neurokinin-B, dynorphin-A, and phoenixins (51). In women, androgens are produced primarily by the ovaries and adrenal glands (52). Skeletal muscle produces small amounts of androgens (53). Testosterone circulates in the blood bound to sex hormone-binding globulin (44%–60%), albumin, orosomucoid, and cortisol-binding globulin. Testosterone and other 19-carbon androgens can be converted to 5α-dihydrotestosterone (DHT) by the action of steroid 5α-reductase or converted to estradiol or estrone by the aromatase enzyme. The liver inactivates T, and the resultant metabolites are excreted in the urine.
*Androgens perform many ergogenic, anabolic, and anticatabolic functions in skeletal muscle and neuronal tissue, leading to increased muscle strength, power, endurance, and hypertrophy in a dose-dependent manner (54).
*ANDROGEN SIGNALING
*SIDE EFFECTS ASSOCIATED WITH ANDROGEN USE AND ABUSE
*CLINICAL USES OF ANDROGEN THERAPY
CONCLUSIONS
Anabolic-androgenic steroids include a wide spectrum of compounds that exert their effects through various mechanisms. Anabolic-androgenic steroid use is advantageous in athletic performance predominantly through enhancements in strength, power, increases in muscle mass, reduced recovery time, and other factors. Major competitive sporting bodies ban the use of AAS; however, the predominant area of AAS usage has now expanded into clinical scenarios, persons undergoing sexual reassignment, and those interested in AAS for purely aesthetic enhancement. Thus, it is not only athletes who are using AAS to gain performance advantages but also other individuals for various reasons. The use of AAS to enhance athletic performance is banned, and coaches, trainers, and medical staff should monitor for signs of use. The use/abuse of AAS has several notable side effects with various consequences that are, in some cases, reversible. Coaches, parents, trainers, and medical staff need to understand why athletes might use AAS and provide educational programming in a preventive capacity. The position of the ACSM is that the illicit use of AAS for athletic and recreational purposes is, in many cases, illegal, unethical, and also poses a substantial health risk. Nonetheless, TRT is used in treating various conditions, and clinicians may elect to use this therapy when medically necessary. The ACSM acknowledges the lawful and ethical use of AAS for clinical purposes and supports the physicians’ ability to provide androgen therapy to patients when deemed medically necessary.
This consensus statement is an update of the 1987 American College of Sports Medicine (ACSM) position stand on the use of anabolic-androgenic steroids (AAS). Substantial data have been collected since the previous position stand, and AAS use patterns have changed significantly. The ACSM acknowledges that lawful and ethical therapeutic use of AAS is now an accepted mainstream treatment for several clinical disorders; however, there is increased recognition that AAS is commonly used illicitly to enhance performance and appearance in several segments of the population, including competitive athletes. The illicit use of AAS by competitive athletes is contrary to the rules and ethics of many sport governing bodies. Thus, the ACSM deplores the illicit use of AAS for athletic and recreational purposes. This consensus statement provides a brief history of AAS use, an update on the science of how we now understand AAS to be working metabolically/biochemically, potential side effects, the prevalence of use among athletes, and the use of AAS in clinical scenarios.
SYNOPSIS
This consensus statement is an update of the previous position stand from the American College of Sports Medicine (ACSM), published in 1987 (1). Since then, a substantial amount of scientific data on anabolic-androgenic steroids (AAS) has emerged and the circumstances of AAS use have evolved in the athletic, recreational, and clinical communities. The objective of this consensus statement is to provide readers with a brief summary of the current evidence and extend the recommendations provided in the 1987 document (1). Key topics discussed are the brief history of AAS, epidemiology, methods, and patterns of AAS use, androgen physiology and ergogenic effects, side effects of AAS, and clinical uses of AAS (see Box 1). The writing group used the rating system of the National Heart Lung and Blood Institute (Table 1) and a consensus approach to synthesize the available evidence from clinical trials and case reports, narrative and systematic reviews, and meta-analyses (3). The recommendations represent the consensus of the writing panel, the ACSM, and incorporate guidance from other professional organizations with expertise in the area.
INTRODUCTION
Anabolic-androgenic steroids are drugs chemically and pharmacologically related to testosterone (T) that promote muscle growth and are not estrogens, progestins, or corticosteroids. An androgen is any natural or synthetic steroid hormone capable of promoting the development of male primary and secondary sexual characteristics via binding to androgen receptors at the tissue level. The term anabolic describes a hormone or other substance capable of enhancing the growth of somatic tissue, such as skeletal muscle and bone. In a sport-related setting, this is typically used to describe the enhancement of skeletal muscle. Table 2 presents nomenclature associated with AAS. In the United States, AAS are classified as Schedule III controlled substances (5). Although AAS has a legitimate medicinal use, nontherapeutic use among athletes and recreationally active young men and women is performed to improve strength, power, increase muscle mass, and improve appearance. Athletic and recreational (i.e., non-competitive) use of AAS has been widespread over the last 50 yr, creating considerable interest by the scientific and medical communities, as well as sport governing bodies, in examining the potential medical, legal, and ethical issues surrounding the use of these substances. All major national and international sports organizations have banned the illicit use of AAS by athletes.
*HISTORICAL PERSPECTIVES
*EPIDEMIOLOGY OF AAS USE
*METHODS/PATTERNS OF AAS USE
*ANDROGEN PHYSIOLOGY
Testosterone is the principal androgen and has both androgenic (masculinizing) and anabolic (tissue building) effects. Testosterone is synthesized from cholesterol via the Δ-4 or Δ-5 pathways through the sequential action of several enzymes (Fig. 2). In men, >95% of T is synthesized in the Leydig cells of the testes (with smaller adrenal contributions) under control of the hypothalamic-anterior pituitary-gonadal axis where gonadotropin-releasing hormone stimulates the release of luteinizing hormone (LH). Healthy men produce ~4 to 9 mg of T per day (10–35 nmol·L−1 ) whereas women have approximately 0.5 to 2.3 nmol·L−1 of circulating T in the blood (5). Gonadotropin-releasing hormone function is under the control of hypothalamic neuropeptides, such as kisspeptins, neurokinin-B, dynorphin-A, and phoenixins (51). In women, androgens are produced primarily by the ovaries and adrenal glands (52). Skeletal muscle produces small amounts of androgens (53). Testosterone circulates in the blood bound to sex hormone-binding globulin (44%–60%), albumin, orosomucoid, and cortisol-binding globulin. Testosterone and other 19-carbon androgens can be converted to 5α-dihydrotestosterone (DHT) by the action of steroid 5α-reductase or converted to estradiol or estrone by the aromatase enzyme. The liver inactivates T, and the resultant metabolites are excreted in the urine.
*Androgens perform many ergogenic, anabolic, and anticatabolic functions in skeletal muscle and neuronal tissue, leading to increased muscle strength, power, endurance, and hypertrophy in a dose-dependent manner (54).
*ANDROGEN SIGNALING
*SIDE EFFECTS ASSOCIATED WITH ANDROGEN USE AND ABUSE
*CLINICAL USES OF ANDROGEN THERAPY
CONCLUSIONS
Anabolic-androgenic steroids include a wide spectrum of compounds that exert their effects through various mechanisms. Anabolic-androgenic steroid use is advantageous in athletic performance predominantly through enhancements in strength, power, increases in muscle mass, reduced recovery time, and other factors. Major competitive sporting bodies ban the use of AAS; however, the predominant area of AAS usage has now expanded into clinical scenarios, persons undergoing sexual reassignment, and those interested in AAS for purely aesthetic enhancement. Thus, it is not only athletes who are using AAS to gain performance advantages but also other individuals for various reasons. The use of AAS to enhance athletic performance is banned, and coaches, trainers, and medical staff should monitor for signs of use. The use/abuse of AAS has several notable side effects with various consequences that are, in some cases, reversible. Coaches, parents, trainers, and medical staff need to understand why athletes might use AAS and provide educational programming in a preventive capacity. The position of the ACSM is that the illicit use of AAS for athletic and recreational purposes is, in many cases, illegal, unethical, and also poses a substantial health risk. Nonetheless, TRT is used in treating various conditions, and clinicians may elect to use this therapy when medically necessary. The ACSM acknowledges the lawful and ethical use of AAS for clinical purposes and supports the physicians’ ability to provide androgen therapy to patients when deemed medically necessary.