Reply to thread


The association between caffeine intake and testosterone: NHANES 2013–2014

Frank E. Glover, William Michael Caudle, Francesco Del Giudice, Federico Belladelli, Evan Mulloy, Eniola Lawal & Michael L. Eisenberg


Nutrition Journal volume 21, Article number: 33 (2022)

Abstract

Background

Caffeine is one of the most commonly used psychoactive drugs in the world, and provides many health benefits including alertness, improved memory, and reducing inflammation. Despite these benefits, caffeine has been implicated in a number of adverse health outcomes possibly due to effects within the endocrine system, effects that may contribute to impaired reproductive function and low testosterone in men. Previous studies have investigated associations between caffeine consumption and testosterone levels in men, although the quantity and generalizability of these studies is lacking, and the results between studies are conflicting and inconclusive.

Methods

Using data from a cross-sectional study of 372 adult men in the 2013–2014 NHANES survey cycle, the researchers set out to characterize the association between serum testosterone levels, caffeine, and 14 caffeine metabolites.

Results

Multivariable, weighted linear regression revealed a significant inverse association between caffeine and testosterone. Multivariable, linear regression revealed significant, inverse associations between 6 xanthine metabolic products of caffeine and testosterone. Inverse associations were observed between 5-methyluric acid products and testosterone, as well as between 5-acetlyamino-6-amino-3-methyluracil and testosterone. A significant, positive association was observed for 7-methyl xanthine, 3,7-dimethyluric acid, and 7-methyluric acid. Logistic regression models to characterize the association between 2 biologically active metabolites of caffeine (theobromine and theophylline) and odds of low testosterone (< 300 ng/dL) were non-significant.

Conclusions

These findings suggest a potential role for caffeine’s contribution to the etiology of low testosterone and biochemical androgen deficiency. Future studies are warranted to corroborate these findings and elucidate biological mechanisms underlying this association.


Full Text:

[URL unfurl="true"]https://nutritionj.biomedcentral.com/articles/10.1186/s12937-022-00783-z[/URL]


TRT Hormone Predictor Widget

TRT Hormone Predictor

Predict estradiol, DHT, and free testosterone levels based on total testosterone

⚠️ Medical Disclaimer

This tool provides predictions based on statistical models and should NOT replace professional medical advice. Always consult with your healthcare provider before making any changes to your TRT protocol.

ℹ️ Input Parameters

Normal range: 300-1000 ng/dL

Predicted Hormone Levels

Enter your total testosterone value to see predictions

Results will appear here after calculation

Understanding Your Hormones

Estradiol (E2)

A form of estrogen produced from testosterone. Important for bone health, mood, and libido. Too high can cause side effects; too low can affect well-being.

DHT

Dihydrotestosterone is a potent androgen derived from testosterone. Affects hair growth, prostate health, and masculinization effects.

Free Testosterone

The biologically active form of testosterone not bound to proteins. Directly available for cellular uptake and biological effects.

Scientific Reference

Lakshman KM, Kaplan B, Travison TG, Basaria S, Knapp PE, Singh AB, LaValley MP, Mazer NA, Bhasin S. The effects of injected testosterone dose and age on the conversion of testosterone to estradiol and dihydrotestosterone in young and older men. J Clin Endocrinol Metab. 2010 Aug;95(8):3955-64.

DOI: 10.1210/jc.2010-0102 | PMID: 20534765 | PMCID: PMC2913038

Back
Top