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Abstract: 

Sex hormone-binding globulin (SHBG), a glycoprotein in circulation, binds testosterone, 

dihydrotestosterone, and estradiol with high specificity, regulating their transport and 

bioavailability. This function relies on long-range conformational interactions between its N-

terminal (NTD) and C-terminal (CTD) domains. Variations in SHBG levels or binding affinities 

alter free hormone concentrations, influencing reproductive and metabolic health. Despite its 

significance, the full-length SHBG structure and the conformational dynamics influencing 

hormone binding remain unclear. Deploying in-silico structural analysis, Raman spectroscopy, 

and network modeling, we investigated the intramolecular structural dynamics of the full length 

SHBG to understand how allosteric perturbations caused by natural mutations affect hormone 

binding and inter-residue interactions. Raman spectroscopy and in-silico analyses show that 

majority of the residues in SHBG (308 residues) constitute loop regions, whereas only 21% 

constitute beta sheet. Mutations in SHBG that alter its binding affinity, though distant from the 

ligand-binding pocket (LBP), induce long-range conformational changes. These mutations are 

clustered in flexible regions but maintain structural order through dense local interactions. Our 

in-silico analyses identified key substructures regulating allosteric interactions between mutation 

sites and ligand-binding residues. This study provides a template for further structural analyses 

of clinically reported mutations and their effect on hormone binding and action. 
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1. Introduction: 

Sex hormone binding globulin (SHBG) is a 45KDa glycoprotein produced primarily in the 

liver
1,2

. It associates with sex hormones - testosterone, dihydrotestosterone (DHT), and estradiol 

- with high affinity in the bloodstream
3
 and plays an important role in regulating their 

distribution, transport, and tissue bioavailability 
4
.  These hormones share a common binding 

pocket on SHBG.  SHBG comprises a homodimeric assembly
5
, made up of two identical 

monomers, each consisting of 401 amino acids. SHBG’s distinct structural arrangement allows it 

to interact selectively with sex hormones
6
. Understanding the intricate interplay between SHBG 

and sex hormones is essential in comprehending the regulatory mechanisms governing hormonal 

actions in the body. Alterations in SHBG levels or its affinity for sex hormones are associated 

with alterations in the circulating concentrations of the unbound or the free hormone and can 

impact an individual’s reproductive and metabolic health
7
. Together, SHBG’s structure and 

function play an important role in modulating the bioavailability and actions of sex hormones, 

orchestrating a delicate hormonal balance. Monomeric structure of SHBG involves a tandem 

repeat of laminin G-like (LG) domains
8,9

, which play a crucial role in its functionality and 

interactions with sex hormones. The LG domain is mainly responsible for its specific binding to 

sex hormones, particularly testosterone, dihydrotestosterone (DHT), and estradiol
10,11

. This 

domain within SHBG create a binding groove that accommodates and interacts with the 

hydrophobic regions of the sex hormones. Additionally, these LG domains contribute to SHBG's 

stability and structural integrity
11

. Mutations or alterations within these LG domains can affect 

SHBG's binding affinity for sex hormones, potentially leading to changes in free hormone levels 

and activity
9
. Moreover, the tandem arrangement of LG domains in SHBG allows for a range of 

interactions with multiple hormones within a steroid class
2
. 

Previous studies have revealed how SHBG distinguishes between androgens (such as 

testosterone and dihydrotestosterone) and estrogens (like estradiol), preferentially binding them 

in opposite orientations within the single steroid-binding site present in each SHBG monomer
12

. 

Androgens and estrogens possess distinct molecular structures and hydrophobic regions
13

. 

SHBG's steroid-binding site within the LG domains, is adaptable, enabling it to selectively 

recognize and bind androgens and estrogens through specific interactions within its steroid-

binding pocket
2,14

. Several mutations in the gene encoding SHBG have been reported to impact 
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its binding affinity for its ligands, testosterone, dihydrotestosterone (DHT), and estradiol
9
. These 

mutations in the SHBG gene could influence its binding affinity for these ligands by altering its 

structure, stability, or functional domains. The extant studies on dynamics of hormone 

bioavailability built upon findings from LBD crystal structure
8,10

 of truncated ligand binding 

domain may not accurately capture the solution dynamics and conformation flexibility across the 

full length SHBG. Despite previous research into SHBG’s function and ligand interactions, the 

full-length structural organization and conformational dynamics that govern its ligand-binding 

properties remains unavailable to date. A particularly unresolved and clinically significant 

question is how naturally occurring mutations, often located far from the ligand-binding pocket 

(LBP), alter SHBG's hormone-binding affinity. The spatial separation of these mutations from 

the LBP suggests an allosteric mechanism, but the structural and dynamic pathways underlying 

such long-range communication are poorly characterized. Understanding these allosteric effects 

is essential to elucidate how SHBG regulates hormonal bioavailability and to interpret the 

functional consequences of disease-associated SHBG variants.  

The present work provides a comprehensive insight on how the mutations which are distant from 

ligand-binding domain (LBD) could alter ligand specificity. These mutations, although spatially 

separated from the binding pocket, are hypothesized to induce conformational changes that 

propagate through the protein’s structure, ultimately modulating its hormone-binding affinity. To 

elucidate this mechanism, we characterized the structural arrangement of SHBG monomer by 

which mutations impact its ligand binding. To generate a full-length model of SHBG, we 

performed homology modeling and validated the structure through AlphaFold comparison and 

Raman spectroscopy. To characterize regions of intrinsic disorder and flexibility, and to assess 

how mutation sites align with these dynamic regions, we conducted a comprehensive disorder 

propensity analysis using consensus-based predictive tools. We were particularly interested in 

understanding whether allosteric effects play a role in modulating the effects of mutations that 

are distant from the ligand binding pocket on SHBG's interactions with its ligands. In order to 

determine how mutation sites influence ligand-binding residues, we carried out structure network 

analysis, identifying key structural blocks (SBs) that mediate allosteric communication. Changes 

in distant regions of the protein due to mutations could potentially propagate conformational 

changes that indirectly affect the ligand-binding site, altering its affinity for sex hormones. 

Therefore, to evaluate the internal flexibility and dynamic coupling of different regions within 
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SHBG, we employed Monte Carlo simulations. Understanding the structural arrangement of LG 

domain, its interaction with rest part of the protein as well as internal dynamics provides valuable 

insights into the molecular mechanisms governing its function as a carrier protein for sex 

hormones selectivity and binding preferences within the single steroid-binding site of the SHBG 

monomer. Collectively, this integrative approach provides a mechanistic framework to 

investigate how distant mutations reshape the conformational landscape of SHBG and modulate 

its hormone-binding behavior. 

 

2. Results: 

As shown in Fig. 1, to accomplish our objectives, we deployed a combination of in-silico 

methods and spectroscopic techniques to characterize key regions in the SHBG protein structure 

which regulate the internal dynamics as well as ligand binding. We performed homology 

modelling and generated the model structure of the SHBG monomer. We verified the accuracy 

of our model by comparing it with the monomeric structure predicted by AlphaFold. Also, to 

complement the in-silico model and capture dynamic structural features, we performed Raman 

Spectroscopy, which provided experimental insights into the secondary structural organization 

and compared it with the in-silico model structure. This comparison helped us to bridge the 

resolution limitations of purely computational models while capturing dynamic features 

inaccessible to static structures. Subsequently, we analysed the structures of the DHT and 

estradiol-bound SHBG to investigate the residues involved in hormone binding and their spatial 

configuration within the protein structure. To determine the internal arrangement and mutual 

interactions between residues, we performed a comprehensive structure network analysis by 

performing normal mode analysis (NMA). The NMA included generating both all-residue 

structure network and community cluster network and a correlation network between amino acid 

residues. This approach allowed us to understand potential allosteric pathways linking distant 

regions to the ligand-binding site. We further studied the flexibility of SHBG monomer using 

MC simulation to identify key residues that regulate the structural dynamics of the protein.  This 

integrative approach has provided important insights into critical aspects governing protein 

behaviour and its binding interactions with ligands. Fig. 1 represents the workflow outlined in 

the manuscript.  
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Together, this integrative framework addresses the limitations of earlier truncated or static 

SHBG models by offering a full-length, dynamic perspective essential for uncovering allosteric 

regulation and mutation-driven effects on ligand binding. 
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Fig. 1. Ensemble Structure Analysis Workflow to probe into SHBG structural dynamics. 

(A) Homology modelling was performed using the human SHBG sequence to generate a model 

structure of the SHBG monomer. (B) To validate our model structure, we compared it with the 

monomeric structure obtained from AlphaFold and further corroborated it by elucidation of 

secondary structural organization.using Raman Spectroscopy. (C) We analyzed ligand-bound 

SHBG structures to identify the protein residues interacting with DHT and estradiol and their 

specific interaction topology. (D) Structure network analysis was pwerformed to reveal the 

distribution and interactions of residues within the 3D protein structure. (E) We used Monte 

Carlo simulation to investigate backbone flexibility of the SHBG monomer, revealing coupled 

motions of different regions/residues. (F) We identified important residues that regulate 

intramolecular structural dynamics in SHBG and influence ligand affinity. By integrating 

experimental and in-silico data, this cumulative workflow has offered a mechanistic 

understanding of SHBG's structural dynamics and regions important in hormone binding. 

 

2.1 Structure modeling of SHBG: Contact Map and Fluctuation Analysis 

Since no full-length structure of the SHBG protein was available at the time of this study, we 

generated an in-silico structure for the monomeric SHBG protein. Within this structure, the LG 

domain houses nearly all of the reported mutations, which have been consistently associated with 

alterations in both estradiol and DHT binding affinities of SHBG (Fig. 2A, Table 1). This 

highlights the significance of the LG domain in mediating the functional impact of these 

mutations on the protein's interactions with these ligands. 

The contact map generated shows inter-residue correlations within the SHBG model structure 

(Fig. 2B). The intensity of the red color is proportional to a higher extent of 

correlations/correlated motions among residues, while negative scores, indicated by green colors, 

represent residue-residue cross-correlation. White color represents uncorrelated residues. The 2D 

contact map indicates that residues in the LG domain mostly maintain positive correlation among 

themselves, while exhibiting anti-correlated motions with the rest of the protein.  

Interestingly, we observed that residue 152 exhibited high positive correlation with the DHT 

binding site at residue 112 (140 with respect to the full-length SHBG structure), indicating strong 
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interaction between these two residues. Mutations at residue 152 have been reported to reduce 

DHT binding affinity of the protein. The majority of the mutation sites displayed anti-correlation 

with ligand binding sites, suggesting their allosteric effects on ligand interaction. 

 

 

Fig. 2. Structural modelling and residue interaction analysis of SHBG reveals intra-domain 

communication pathways potentially regulating ligand binding and conformational 

dynamics. (A) The modelled full-length SHBG monomer structure (402 amino acids) is shown 

with domain-specific colour coding. The N-terminal Laminin G-like (LG) domain, containing 

the steroid-binding site, is shown in light pink, while the rest of the structure is depicted in lime 

green. Experimentally reported mutation sites are marked in blue. Mutations known to reduce 

ligand-binding affinity (e.g., T77I, R152C, R152H, G224E) are highlighted in red, and those 

associated with enhanced binding are shown in cyan. The residues forming the structural bridge 

between the LG domain and the rest of the monomer are coloured in yellow and light orange, 

indicating possible communication interfaces. (B) A residue–residue contact map was generated 

using a 5 Å distance threshold to identify spatial proximities in the modelled structure. Each dot 

represents a residue pair with Cα–Cα distance below the cutoff, and the colour gradient indicates 

interaction strength. The map reveals strong intradomain interactions within the LG domain, 

especially in the ligand-binding pocket, and highlights the presence of long-range contacts that 

may mediate allosteric communication between distant regions of the protein. 

 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

2.2 Model validation of the in-silico SHBG structure and insights into SHBG conformation 

We compared the homology model of the SHBG monomer, generated using I-TASSER with 

default settings, to the AlphaFold-predicted structure (obtained via AlphaFold version 2.3.1 

using the AlphaFold Protein Structure Database) to assess structural similarity. The overall root 

mean square deviation (RMSD) between the two models was 2.416 Å, indicating a moderate 

degree of structural deviation (Fig. 3A). To gain deeper insight into the distribution of these 

differences, we conducted domain-specific comparisons by separating the LG domain (residues 

1–238) and the N-terminal domain (residues 239–401). As depicted in Fig. 3B, the N-terminal 

domain showed greater structural variance (RMSD = 3.813 Å) compared to the LG domain 

(RMSD = 2.175 Å). The primary deviation in the LG domain was traced to the final 40 residues 

at the C-terminal, which formed a helical segment and extended loop in the AlphaFold model but 

appeared only as an extended loop in the I-TASSER-generated structure. Similarly, the elevated 

RMSD in the N-terminal domain is attributed to differences in secondary structure predictions, 

where AlphaFold predicted helical elements that were absent in the homology model. These 

differences likely reflect the challenges of accurately modeling structurally dynamic or 

disordered regions. Notably, AlphaFold has been reported to overpredict ordered structures, 

particularly α-helices, in regions of intrinsic flexibility or disorder, particularly at the N- and C-

terminal ends of proteins
15

. It is well-known that in-silico modelling approaches, including 

AlphaFold, can sometimes overestimate the disorder in terminal regions, leading to deviations in 

predicted structures
16

. Additionally, AlphaFold’s tendency to overestimate certain secondary 

structures, such as α-helices, particularly in flexible or disordered regions, may have contributed 

to the observed differences
17

. This limitation is particularly relevant for SHBG, a loop-dominant 

protein where the dynamic nature of loops plays a critical role in its structure. Moreover, 

AlphaFold's performance, while remarkable in predicting monomeric structures, can be less 

reliable when dealing with proteins that exhibit significant flexibility or exist in multi-meric 

forms, as SHBG potentially does
18

. This highlights the importance of complementary structural 

modelling techniques, such as homology modelling, which may provide alternative structural 

insights where AlphaFold predictions diverge. Furthermore, experimental validation remains 

essential to refine these in-silico predictions and accurately capture the nuanced features of 

protein structures like SHBG. The integration of techniques such as Raman spectroscopy 
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provides crucial insights into secondary structure elements, offering validation and revealing 

potential limitations in computational models. 

Raman spectroscopy analysis provided significant insights into the secondary structure of the 

SHBG monomer (Fig. 3C and 3D). The analysis underscored the prominence of loop regions 

within the protein's structure. Our in-silico analysis revealed that 21% of the SHBG monomer 

consists of β-sheet structures, while a remarkable 77% of the residues (equivalent to 308 amino 

acids) are involved in loop regions. These loop regions encompass both ordered and disordered 

segments of the protein. The Raman spectroscopy data corroborated these findings, indicating a 

comparable secondary structure distribution with approximately 23% β-sheet content and about 

77% loop regions (Fig. 3D). The loop-rich nature of SHBG suggests that these segments are far 

more than passive linkers between secondary structure elements. Loops are often associated with 

enhanced conformational flexibility, which can allow proteins to adapt dynamically to various 

molecular interactions. In the case of SHBG, the extensive loop network may contribute 

significantly to the protein’s ability to undergo subtle yet functionally important conformational 

changes in response to ligand binding or mutations. This structural adaptability is particularly 

relevant for mediating allosteric effects, where perturbations such as mutations at distant sites 

propagate through the protein structure to influence the behavior of the ligand-binding pocket. 

Moreover, loops can serve as hubs for intramolecular communication, especially in multi-

domain proteins like SHBG, where coordinated dynamics between the laminin G-like domains 

and surrounding flexible regions are critical for functional integrity. Given that many of these 

loops likely bridge both ordered and disordered segments, they may play a unique regulatory role 

in stabilizing transient conformations required for selective hormone recognition and binding. 

Despite this, loop regions remain underexplored in the context of full-length SHBG models, 

which have traditionally focused on static representations of structured domains. Our analysis 

shows the importance of these flexible elements, and we hypothesize that SHBG’s loop-

dominated architecture is integral to its function as a dynamic hormone carrier. Elucidating how 

these regions contribute to internal dynamics and allosteric signalling is therefore essential to 

fully understand the molecular basis of hormone binding and specificity in SHBG. 

This spectroscopic validation highlights that despite the inherent flexibility and often 

unstructured nature of loop regions, they significantly contribute to the ordered structural 
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framework of the SHBG monomer. The substantial representation of loop regions suggests their 

critical role in maintaining the protein's structural integrity and functionality, bridging both 

ordered and disordered domains within the overall architecture of SHBG.  

We conducted detailed mathematical analyses on the Raman spectrum of the wild-type (WT) 

SHBG to complement the secondary structure evaluation. The analytical approach involved 

baseline correction, derivative spectroscopy, spectral moment calculation, entropy analysis, and 

peak asymmetry determination to provide comprehensive quantitative insights. The first and 

second derivatives of the Raman spectrum were computed to enhance the detection of subtle 

spectral features. The first derivative plot highlighted minor intensity fluctuations and spectral 

shifts, while the second derivative was particularly effective in resolving overlapping bands, 

offering precise identification of peak positions indicative of specific structural elements or 

molecular interactions. Baseline fitting using a fifth-order polynomial provided a robust method 

to correct spectral data, ensuring the accurate quantification of peak intensities and positions. 

The corrected spectrum differentiated between genuine spectral features and baseline artifacts, 

significantly improving the reliability of complex structural analyses. Quantitative spectral 

metrics included Shannon entropy of 6.34, indicating moderate spectral complexity and 

suggesting an ordered yet diverse molecular environment; a spectral centroid located at 1656.15 

cm⁻¹, typical of the Amide I region, reflecting predominant secondary structural features; 

variance of 315.89, indicative of moderate bandwidth reflecting a distinct yet diverse vibrational 

environment; and skewness of 1.31, emphasizing the asymmetric distribution of spectral 

intensity toward higher wavenumbers, possibly indicating specific hydrogen bonding or 

environmental effects. Peak detection identified eight distinct peaks, confirming the presence of 

multiple structural and molecular features as observed with the SHBG model.  
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Fig. 3. Validation of SHBG Homology Model via In-Silico Comparison with AlphaFold 

Predictions and Raman Spectroscopic Analysis. (A) Overlap between in-silico model 

structure (Green) and AlphaFold structure (Red) shows an RMSD score of 2.416 (293 to 293 

atoms). (B) The N-terminal domain exhibits higher deviation (RMSD score = 3.813) between the 

homology model (Green) and AlphaFold structure (Red) compared to the LG domain (RMSD 

score = 2.175). In the inset, we have shown the zoomed in view of the divergent N-terminal 

region (residues 239–401). Here in-silico model structure is represented as Green and AlphaFold 

structure as Red. (C) Raman Spectroscopy was performed as a control check (Amide I), showing 

the raw amide I spectra ranging of the SHBG monomer from 1600 to 1700 cm⁻¹. (D) The in-

silico model structure shares similar secondary structure content with the experimental results 

obtained from the Raman Spectroscopy. This clearly indicates that although SHBG is a loop 

dominant protein, the extended loop regions are not intrinsically disordered. (E) The Fig. 

illustrates the first derivative spectrum, highlighting minor intensity fluctuations and spectral 

shifts. Panel (F) shows the second derivative spectrum, resolving overlapping bands to accurately 
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pinpoint peak positions. Panel (G) displays the baseline correction process, demonstrating the 

original smoothed spectrum (black), the polynomial-fitted baseline (red dashed line), and the 

baseline-corrected spectrum (blue), ensuring precise identification and quantification of spectral 

features. 

 

2.3 Intrinsic disorder analysis revealed mutations were positioned in flexible regions of the 

protein 

To understand the regions having flexibility and intrinsic disorderness within the SHBG protein 

sequence, we performed an analysis employing prevalent intrinsic disorder predictors, yielding a 

mean intrinsic disorder profile (Fig. 4A). The predictions were integrated into a consensus 

disorder profile, calculated as the unweighted average of individual predictor scores for each 

residue. Table 1 provides the Mean Predicted Disorder Scores (PDSs) for individual residues. 

We categorized the regions and residues surpassing the 0.5 PDS threshold as intrinsically 

disordered, while those within the 0.2 to 0.5 range are deemed flexible based on standard 

thresholds in the literature
19,20

. This distinction of the residue patches is visually represented with 

varied colors, highlighted in the protein structure (Fig. 4A and 4B). Despite the predominance of 

loop residues, only few residue patches showed intrinsically disordered nature having mean PDS 

values higher than 0.5. Here, specific stretches from residue 1 to 8, residue 39 to 51, residue 314 

to 329, and residue 391 to 402 exhibited intrinsic disorder nature. Notably, most of the residues 

of SHBG displayed flexibility, with mean PDS values ranging from 0.2 to 0.5 (Table 1). Our 

analysis of mutation sites that affect ligand binding revealed that out of the 16 reported mutation 

sites (Supplementary Table 1), 12 demonstrated flexible characteristics (Table 1). Specifically, 

mutation sites 36, 139, 148, 152, 221, and 224 exhibited higher flexibility (PDS within the 0.4 to 

0.5 range) compared to other mutation sites. Among the mutations that reduce DHT binding 

affinity to SHBG (T77I, R152C, R152H, and G224E), residues 152 and 224 displayed higher 

flexibility having elevated mean PDS values (0.4-0.5) in contrast to residue 77 (mean PDS: 0.2-

0.3). Similarly, substitutions affecting estradiol's binding affinity (R164C, L194M, and E205K) 

showed mean PDS values within the 0.3 to 0.4 range. 

This intrinsic disorder calculation aligns with the experimental data observed from Raman 

Spectroscopy. The disorder observed from Raman Spectroscopy was approximately 22%, while 
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the in-silico structure calculated about 13% disorder (Fig. 4A). Although these values are not 

identical, they are reasonably consistent given the inherent differences between experimental and 

computational methods. Moreover, this disorder calculation not only aligns with but also 

validates the earlier Raman Spectroscopy analysis conducted for secondary structure prediction 

(Fig. 3C). This convergence emphasizes the consistency and reliability of our computational 

predictions in elucidating the propensity for disorder within the intricate framework of the 

protein structure.  

 

Fig. 4. Disorder propensity and mutation localization in SHBG protein reveal that the 

sequence naturally maintains an ordered structure, with a substantial number of observed 

mutations predominantly located within its flexible regions. (A) A multiparametric analysis 

elucidates the intrinsic disorder predisposition of SHBG. The plot demonstrates the mean 

disorder propensity, determined by averaging the disorder profiles from individual predictors. 

Residues and regions with Mean Predicted Disorder Scores (PDS) surpassing a threshold of 0.5 

are classified as disordered, as indicated by the dark red background. Additionally, those with 

PDS values between 0.2 and 0.5 are earmarked as inherently flexible or presumed flexible. 

Varied line styles and shades of red boxes convey differing degrees of flexibility. (B) Visual 

representation of SHBG highlights intrinsically disordered regions in red, flexible domains in 

green, and documented mutations as light red sticks. It is noteworthy that a significant proportion 

of the reported mutations reside within SHBG's flexible zones.  

2.4 Effect of mutations on local intrinsic disorder propensity of SHBG 
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Next, we analysed how mutations affect local disorder propensity of SHBG. To this end, we 

calculated per-residue disorder profiles for all the mutants and overlaid them with the disorder 

profile of the wild type protein. Fig. 5A represents the results of this analysis and shows that the 

local disorder propensity of SHBG was differently affected by mutations. It is also clear that 

some mutations increased the local disorder propensity, whereas others decreased it. To better 

see changes induced by mutations, we utilized the “difference disorder spectrum” approach, 

where a per-residue disorder profile generated for the wild type protein was subtracted from the 

disorder profiles of individual mutants. To better visualize changes induced by mutations, we 

utilized the “difference disorder spectrum” approach, where a per-residue disorder profile 

generated for the wild-type protein was subtracted from the disorder profiles of individual 

mutants. Fig. 5B represents the overlaid “difference disorder spectra” for all 16 mutants. While 

these trends suggest mutation-specific impacts on local disorder, it is important to note that the 

“difference disorder spectra” reflect correlations rather than causative relationships. Changes in 

local disorder propensity do not necessarily translate to functional effects such as altered binding 

affinity. Other molecular factors such as electrostatic changes, steric hindrance, or alterations in 

hydrophobicity may also contribute to the observed functional outcomes and should be 

considered alongside disorder shifts. Finally, Fig. 5C correlates local disorder propensity in a site 

of a given mutant with the disorder propensity of the wild type at the same position. Here, 

symbols located above the diagonal correspond to the mutations that caused the local increase in 

the disorder propensity, whereas mutations leading to the local decrease in disorder propensity 

are located below the diagonal.  

Analysis of these data shows that based on their absolute effects on the local disorder propensity, 

mutations can be arranged as D139N < N181K < R152H < T36N < R123Q < A179P < E205K < 

L194M < L124M < E148D < R183W < E81I< G224E < T77I < R152C < S221L < R164C, with 

the smallest effects being introduced by mutations T36N, R123Q, D139N, R152H, and N181K. 

The strongest positive effects (i.e., largest increase in local disorder propensity) were introduced 

by G224E, L124M, and L194M, whereas the strongest negative effects (i.e., largest decrease in 

local disorder propensity) were promoted by R164C, S221L, R152C, T77I, E81I, R183W, and 

E148D. These changes were mostly agreed with the expected changes based on the known 

classification of residues as order- (C, W, Y, I, F, V, L, H, T, and N) and disorder-promoting (A, 

G, D, M, K, R, S, Q, P, and E). In fact, mutations causing increase in the local disorder 
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propensity were substitutions of order-promoting to disorder-promoting residues, whilst changes 

of disorder-promoting residues to order-promoting ones were associated with the decrease in 

local disorder propensity.  

 

Fig. 5. Analysis of the effects of mutations on local disorder propensity of human SHBG. A. 

Overlaid per-residue disorder profiles generated for the wild type protein and 16 mutants. 

Vertical grey vertical bars show positions of mutations. B. Overlaid “different disorder spectra” 

calculated by subtracting the disorder profile of the wild type SHBG from the disorder profile of 

the mutant. Positions of mutations are shown by vertical grey bars. C. Local disorder score in 

mutant versus local disorder score in wild type plot.  

 

2.5 SHBG Ligand Binding Sites were located in the Beta Barrel Region 

To locate the ligand binding pockets within SHBG, we analysed the available DHT and 

estradiol-bound SHBG structures (1KDM and 1LHU, respectively) (Fig. 6A and 6B 

respectively). The reported mutation sites were located distantly from both ligands in the 

respective bound structures (Supplementary Table 1). In the DHT-bound structure, only one 

DHT binding site was approximately 3Å away from residue 152, a mutation site known to 

diminish DHT binding affinity (Distance between residue 152 and 112 is ~3Å) (Fig. 6A). 

Similarly, within the estradiol-bound structure, the closest distance observed between estradiol 

and the reported mutation sites was 8Å, whereas the minimum distance from estradiol binding 

residues was 7.5Å (Fig. 6B). These observations suggest that mutations distant from the ligand 
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binding sites influence the protein's functional behaviour, possibly through allosteric 

modulations.  

 

 

Fig. 6. Ligand interaction residues are located in the β-barrel region of SHBG. DHT-bound 

SHBG structure (PDB ID: 1KDM) is shown in (A), where DHT and the reported mutation sites 

are depicted as pale-yellow sticks, and the ligand-binding pocket is highlighted in red. The 

minimum distance between DHT and the mutation sites is approximately 8 Å; notably, residue 

R152 lies ~5 Å from DHT-binding residue 112, while no DHT-binding residues are located near 

mutation site T77. Panel (B) presents a 2D schematic of DHT-binding residues in the SHBG 

monomer. In (C), the estradiol-bound SHBG structure (PDB ID: 1LHU) shows estradiol as pale 

yellow sticks, ligand-binding residues in red, and mutation sites in green. The minimum distance 

between estradiol and the reported mutation sites is ~8 Å, with specific measurements including 
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E205–141 (~7.5 Å), L194–56 (~7.5 Å), and R164–65 (~8 Å); additionally, R164 (position 135 in 

the full-length SHBG) lies adjacent to residue 163 (134), a known estradiol-binding site. Panel 

(D) illustrates a 2D schematic of estradiol-binding residues. These observations suggest that the 

mutations, although spatially distant from the ligand-binding sites, may exert their influence 

through long-range allosteric effects      A table summarizing distances between key mutation 

sites (e.g., R152C, L194M, R164C) and DHT/estradiol is provided in Supplementary Table 1 for 

quick reference. 

2.6 Structure network analysis to determine how ligand binding residues and mutation 

sites are orchestrated in SHBG and their association with internal dynamics of the protein 

To investigate the internal arrangement and mutual relationships between residues, we conducted 

a comprehensive structure network analysis
19,21

 and generated both an all-residue structure 

network (Supplementary Fig. 1) and a community cluster network (Fig. 7A.) The community 

cluster network revealed the organization of SHBG residues into 11 distinct structural blocks 

(SBs) as illustrated in Fig. 6A and outlined in Supplementary Table 2. Fig. 7B shows the 

residues in the SHBG structure by different colors based on their positions in specific SBs. 

Notably, six of these structural blocks (SBs 1, 3, 5, 7, 8, and 9) contained a substantial number of 

residues, emphasizing their significance within the structural network (Fig. 7A). Additionally, 

SBs 2, 4, and 6 exhibited dense connections with other SBs, indicating their importance in terms 

of stability of the protein structure.  

This study represents the first application of residue-level structure network analysis on the full-

length monomeric SHBG protein. Previous structural analyses have largely been restricted to 

truncated forms, primarily focusing on the ligand-binding domain, leaving the role of distant 

regions and their long-range interactions unexplored. By analysing the entire protein, our 

approach captures a comprehensive map of inter-residue connectivity, allowing for the 

identification of structurally encoded allosteric communication pathways between distant 

mutation sites and the hormone-binding pocket. This network-based framework provides a novel 

lens through which to understand the molecular basis of allosteric regulation in SHBG. 

We found that the hormone (DHT and estradiol) binding sites were mainly housed in SB 3, 5 and 

7. Only one DHT binding site (Valine 65) was in SB 4. The reported mutation sites 

predominantly clustered within four interconnected SBs; SB 2, 3, 5, and 7, indicating their 
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crucial involvement in structural dynamics (Supplementary Table 2). It's noteworthy that, only 

one mutation site, R164C, resided within SB4.  

The correlation network between amino acid residues suggested that majority of the residues in 

LG domain were highly correlated, whereas some residues showed correlated motions with the 

rest part of the structure (Fig. 7C). Positive correlations have been shown as red colour. 

Interestingly, most of the inter-domain contact forming residues having high positive correlation 

were housed within SB 3, 5 and 7 (Fig. 7A and 7C). We also observed that residues surrounding 

the binding cleft imposed anti-correlated motions indicating their allosteric effects (Fig. 7D). 

Interestingly, we found that some ligand binding residues and naturally occurring mutation sites 

displayed cross-correlation. Residues with higher correlated motions formed contact and 

clustered into same or highly interacting SBs.  

 

 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Fig. 7. A network, analysis of SHBG's structure reveals the distribution of key interacting 

residues and structural blocks in its 3D conformation. (A) Within the Structure Network of 

the SHBG protein, 11 distinct Structure Blocks (SBs) are present. The size of these SBs is 

dictated by the count of their constituent residues. The magnitude of interactions between these 

SBs is conveyed through the varying edge widths. Here SB 1, 2, 3, 7, 5, and 8 are comprised of 

large number of residues, whereas SB 2, 3, 4, 5,6, and 8 have a large number of connections in 

comparison with others. (B) A rendered model of SHBG is depicted, wherein the residue 

stretches have been marked with same color as their corresponding SBs. For example, SB 1 is 

colored as Blue in Fig. A. accordingly, the Blue colored region in this Fig. corresponds to the 

residues constituting SB 1. (C) SHBG monomer shows the residues having higher positive 

correlations among themselves. Red coloured lines indicate positive correlations, i.e. those 

residues form contacts among themselves. (D) SHBG structure indicating cross-correlations 

among residues. Blue lines indicate cross-correlations. Here inter domain residues imposed 

cross-correlation among themselves. Also, some mutation sites in the LG domain and ligand 

binding residues showed cross-correlation. 

 

2.7 Conformational fluctuation analyses identified significant sub-structures/clusters in 

SHBG and their effect on overall structural dynamics 

We deployed the course-grained Monte Carlo simulation by sampling 2*10^5 conformations, 

which provided a comprehensive exploration of collective motions and residue fluctuations 

within the SHBG structure. The Root Mean Square Fluctuation (RMSF) profile derived from this 

simulation revealed a distinct pattern: a notable lower extent of fluctuation among residues 

located within the LG domain (residues 1-239) in comparison to the remaining segments of the 

protein (Fig. 8A). The scatter plot depicted in Fig. 8A effectively showcased the comparison 

between the calculated RMSF values (illustrated as solid spheres) and the RMSF values derived 

from the predicted model (represented by solid lines). This visualization demonstrated the 

alignment between model performance and the actual RMSF values across the protein sequence. 

Notably, an intriguing observation emerged that the reported mutation sites exhibited relatively 

lower fluctuations compared to other residues. Moreover, the contact map derived from the 

RMSF profile (Fig. 8B) unveiled several regions characterized by high-frequency contacts, 
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forming island-like clusters within the protein structure. Among these, the most substantial 

cluster encompassed residues 1 to 259, forming a large interconnected region. Additionally, 

distinct dense islands comprised residues spanning from 113 to 188, 235 to 238, 275 to 264, 

continuing with 293 to 307, and extending to 355 to 385. These regions signify the most 

significant clusters, indicating potential sites of dense interaction within the protein structure. 

Furthermore, maximal clique analysis identified highly significant residues or patches within the 

SHBG structure (Fig. 8C and Supplementary Table 3). We found that many of the maximal 

clique residues participated in inter-domain interaction within the monomeric structure (Fig. 2). 

The top three identified maximal cliques are highlighted with thick black borders, among which 

most of them were housed in the island formed of residues 1 to 259. Remarkably, these top three 

cliques predominantly consisted of residues adjacent to mutation sites, suggesting their 

importance towards the structural integrity. Additionally, some of these residues exhibited close 

proximity to the ligand binding sites, further emphasizing their potential functional significance 

in ligand interactions. Again, the interesting observation of seven clique residues housed within 

SB3 further emphasizes the significance of this particular SB. Such a concentration of maximal 

clique residues within SB3 potentially denotes its role in facilitating essential structural and 

functional dynamics within the protein. 
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Fig. 8. Fluctuation analysis reveals the dense contact islands in SHBG. (A)The scatter plot 

represents the actual RMSF values with solid sphere markers, and each point is color-coded 

based on its RMSF magnitude, allowing for a more intuitive grasp of the variations in RMSF 

values across different amino acid positions. The line plot in red represents the model’s 

predictions and shows how model performance aligns with the actual RMSF values across the 

protein sequence. (B) The dense regions with significant contacts in the binary contact map have 

been identified and marked with red rectangles on the contact map. These regions are indicative 

of stable, well-defined structures within the protein. (C) The Asynchronous Label Propagation 

Algorithm detected 8 communities (discussed in the results) within the protein graph. The 
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visualization displays these communities, and within this graph, the nodes are color-coded by the 

community and sized by degree of centrality. The top 3 cliques (discussed in the results) have 

been highlighted with thick black borders.  

 

3. Discussion and Conclusion: 

Our integrated approach reveals that loop-rich structure of SHBG facilitate extensive allosteric 

communication between mutation sites and the ligand-binding pockets. By generating the in-

silico full-length SHBG structure and validating it through Raman spectroscopy, we investigated 

previously unresolved structural regions. Our findings showed that around 77% of the SHBG 

structure comprises loop regions which, despite their disordered tendencies, exhibit structural 

organization essential for ligand binding, inter-domain communication, and dimerization. 

Structure network and contact map analyses identified strong interconnections between these 

loop regions and the β-barrel binding site, suggesting potential allosteric regulation pathways. 

Notably, mutations were predominantly located within these flexible loops and, although 

spatially distant from the binding sites, were found to influence hormone affinity supporting the 

presence of long-range allosteric effects. Together, these findings highlight a structurally 

coordinated mechanism where loop-mediated allosteric communication modulates SHBG’s 

ligand-binding property. 

The complex interactions between proteins and their ligands influence the clinical manifestation 

of diverse physiological processes
22

. While hormone binding proteins (HBPs) and regular 

proteins participate in this intriguing interplay, their mechanisms and biological contexts vary 

distinctly. Binding pockets in HBPs have evolved to accommodate their specific hormone 

partners
23,24

. This high affinity ensures that the signal reaches the intended recipient, 

orchestrating specific cellular responses. HBPs, such as Sex Hormone-Binding Globulin 

(SHBG)
14

 and Corticosteroid-Binding Globulin (CBG)
25,26

, thyroxine-binding globulin 

(TBG)
27,28

 have evolved to bind and transport specific hormones. HBPs are classified into two 

main types: steroid-binding and non-steroid-binding proteins. Non-steroid-binding proteins, 

including various enzymes, transport proteins, and receptors, interact with a diverse range of 

ligands such as neurotransmitters, enzymatic substrates, and signalling molecules, playing 

critical roles in biological processes
29-31

. In contrast, the steroid-binding proteins, like SHBG and 
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CBG, exhibit high specificity for steroid molecules such as testosterone, estrogen, and cortisol, 

facilitating their transport and modulating their bioavailability 
32-34

. This specificity enables them 

to effectively regulate the concentration and distribution of steroid hormones in the bloodstream, 

influencing physiological processes like reproduction, metabolism, and stress responses. 

SHBG’s binding affinity towards specific hormones influences their distribution and 

accessibility, ensuring a delicate hormonal equilibrium crucial for various physiological 

functions. These associations highlight SHBG as a potential biomarker for diagnosing and 

monitoring hormonal disorders and related pathologies
35-37

. The loop-dominant SHBG structure 

is critical for interactions with specific ligands. The different orientations of androgens and 

estrogens within the SHBG steroid-binding site hold functional significance
12

. This alteration in 

orientation influences the molecular interactions and accessibility within the binding site. 

Mutations at different sites of SHBG disrupt its hormone-binding affinity, leading to an array of 

health conditions
9,38

. Therefore, understanding the structural orchestration of SHBG, importance 

of its different regions from the perspective of its ligand binding as well as function is critical. 

But due to the unavailability of full length SHBG monomeric structure, clear understanding of 

the conformational dynamics associated with ligand binding and their disruptions under different 

mutation conditions have remained elusive and not fully understood. Unlike truncated structures, 

the full-length SHBG can reveal how the LBD communicates with other regions of the protein, 

allowing for a more accurate representation of its conformational dynamics and flexibility in 

solution. Additionally, full-length SHBG is vital for investigating allosteric mechanisms and how 

distant mutations can influence hormone bioavailability and regulatory functions. In this study, 

we generated in-silico SHBG model and investigated its structural arrangement and possible 

allosteric interactions. 

Loop regions in proteins are essential components that contribute significantly to their structural 

dynamics, function, and versatility. SHBG, despite being comprised of 77% unstructured loop 

residues, shows a propensity for forming ordered substructures as observed from the disorder 

calculation (Fig. 4). Our Raman Spectroscopic analysis also showed that SHBG monomer 

contains only 13% disordered regions which validates the in-silico predictions. In monomeric 

SHBG, the flexible loop residues connect the N-terminal and C-terminal LG domains, 

facilitating dimerization
2,39

, inter domain interactions, and ligand binding (Fig. 2). Contact map 
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and network analyses revealed a strong correlation between loop residues of the two domains, 

highlighting their role in structural communication (Fig. 1B and 7C). Also, most of the reported 

mutations which influence the ligand binding affinity of the protein are positioned in the flexible 

loop regions (Fig. 4). Notably, over 50% of reported mutations affecting ligand binding are in 

these flexible loops, suggesting potential allosteric crosstalk with the ligand-binding pocket in 

the β-barrel region, despite the mutation sites being distant from it. 

The structure network topology of the SHBG monomer revealed the interplay among residues 

based on pairwise interactions and interaction strength, highlighting a cross-correlation between 

mutation sites and ligand-binding sites. This suggests that the effects of mutations are transmitted 

to the hormone binding site through allosteric crosstalk. Notably, naturally occurring mutations 

impacting DHT and EST binding clustered in specific SBs (Supplementary Table 1), which 

showed dense interconnections, emphasizing their role in maintaining structural integrity. Key 

ligand-binding residues were positioned in SBs 3, 4, 5, 6, 7, and 10 (Table 3), with SB 5 housing 

9 out of 24 pocket-forming residues and SB 6 only one. Mutations reducing DHT binding were 

found in SBs 2, 5, and 7, while those enhancing EST binding were in SBs 3 and 4. These SBs (2, 

3, 4, 5, 6, and 7) exhibited strong interconnections, with mutation sites positioned at least 7.5 Å 

from ligand molecules, suggesting indirect interactions through correlated motions. This 

allosteric crosstalk reveals the influence of distant mutations on ligand-binding dynamics. 

The RMSF profile revealed variations in fluctuation intensity, highlighting distinct dynamics and 

stability of the LG domain compared to other regions within the protein structure (Fig. 8A). 

Contact map derived from RMSF identified residue islands formed through strong interactions, 

influencing the protein's structural dynamics. Residues 1 to 259, forming an island with maximal 

clique residues, demonstrated significant centrality and inter-domain contact, showing their 

structural importance. Most of the significant sites identified through maximal clique analysis 

were in SBs 2, 3, 5, 6, 7, and 8 (Supplementary Table 3), which contains the LG domain, ligand-

binding sites, and mutation sites. These maximal clique residues strongly interconnect with 

ligand-binding and mutation sites, indicating their potential role in allosteric communication and 

the impact of mutations on ligand binding. This interconnected cluster plays a crucial role in 

mediating interactions crucial for the protein's functional properties. 
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Our study provides a comprehensive picture on the crucial roles of loop regions, mutation sites, 

and SBs in defining SHBG's structural dynamics and ligand recognition. Mutation sites in 

flexible loop regions indirectly influence ligand-binding pockets, revealing an intricate allosteric 

network governing protein-ligand interactions. The full-length SHBG model presented here 

serves as a foundational template for future structural studies, with mechanistic insights on the 

implications of reported mutations and their potential downstream effects. 

Our study introduces an integrative framework that brings together experimental and 

computational strategies to unravel the structure-function dynamics of SHBG. This approach 

offers several distinct advantages. First, we present, for the first time, an in-silico model of the 

full-length monomeric SHBG protein, enabling detailed analysis of inter-domain interactions and 

structural communication that are absent in truncated versions. Second, Raman spectroscopic 

validation of secondary structure complements disorder predictions, enhancing confidence in 

model accuracy and structural interpretations. Third, by means of structure network and 

correlation analyses, we mapped previously uncharacterized allosteric pathways connecting 

distant mutation clusters with the hormone-binding pocket. Finally, the integration of RMSF 

profiling, contact maps, and maximal clique analysis offers a comprehensive view of SHBG's 

conformational landscape, identifying key residue islands involved in stability and ligand 

responsiveness. Together, these strengths provide a foundational basis for understanding the 

SHBG function in health and disease, with implications for targeted drug design and biomarker 

discovery. 

Absence of functional experimental assays probing into conformational dynamics associated 

with the SHBG and its mutants is a limitation in the current study. Future work would aim at 

studying the mutant structures that effect ligand binding and investigating how the mutations 

alter critical contacts in the ligand binding pocket. Further, using in-silico approaches we would 

study different mutant structures of SHBG to understand how the loop movements modulate the 

pocket formation for specific hormones. Additionally, combining experimental and 

computational strategies using both ligand-bound and unbound structures would help to identify 

intermediate protein conformations and provide a deeper understanding of SHBG's 

conformational landscape. Such studies would provide insights into the allosteric regulation 
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mechanisms and might inform the development of targeted therapeutics that modulate SHBG 

function. 
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Table 1. Mean Predicted Disorder Score (PDS).  

Mean Disorder Score Residue Number 

0.809311 1 

0.757418 2 

0.720336 3 

0.674606 4 

0.620881 5 

0.566172 6 
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0.502125 7 

0.507669 38 

0.548752 39 

0.556564 40 

0.592245 41 

0.60112 42 

0.609302 43 

0.63396 44 

0.67039 45 

0.633811 46 

0.62255 47 

0.583331 48 

0.546652 49 

0.535958 50 

0.501491 213 

0.505582 214 

0.49511 312 

0.515839 313 

0.520528 314 

0.55882 315 

0.544666 316 

0.564331 317 

0.54962 318 

0.575563 319 

0.586136 320 

0.577758 321 

0.571685 322 

0.549809 323 

0.529854 324 

0.527038 325 
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0.523057 326 

0.514384 327 

0.529279 328 

0.521117 390 

0.542641 391 

0.582573 392 

0.623887 393 

0.668668 394 

0.686604 395 

0.74365 396 

0.800271 397 

0.80994 398 

0.834895 399 

0.843206 400 

0.875417 401 

0.873391 402 

 

 

4. Materials and Methods: 

4.1 Intrinsic Disorder Analysis 

Due to the absence of an experimentally determined full-length structure for SHBG at the time of 

this study, we began by retrieving its protein sequence from UniProt (ID: P04278). To evaluate 

the intrinsic disorder characteristics of the protein, we applied a combination of well-established 

per-residue disorder prediction tools, including PONDR
®

 VLXT
40

, PONDR
®

 VSL2
41

, PONDR
®

 

VL3
42

, PONDR
®

 FIT
43

. Also in our analysis, we deployed two types of IUPred algorithms for 

predicting short as well as long intrinsically disordered regions, IUPred_short and 

IUPred_long
43

, respectively. We also computed the mean disorder propensity of the SHBG 

protein by averaging the disorder profiles provided by the individual predictors. We employed a 

consensus approach to evaluate intrinsic disorder, as empirical observations have shown that this 
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approach usually improves predictive performance compared to using a single predictor. In these 

analyses, we considered predicted disorder scores above 0.5 as indicating disordered residues 

and regions, while considered scores ranging from 0.2 to 0.5 as the fluctuating regions within the 

protein
19

.  

 

4.2 Structure-Based Analysis 

Model Structure Preparation 

The SHBG protein sequence was obtained from UniProt (ID: P04278), and it’s in silico 

structural model was generated using I-TASSER (I-TASSER Suite version 5.2)
44

. Subsequently, 

we performed an in-vacuo energy minimization process on this model structure to mitigate 

unfavorable interactions and steric clashes, following a previously established protocol
45

. 

 

4.3 Raman Spectroscopy and Data Processing 

To investigate the conformational dynamics and solution-phase secondary structure of Sex 

Hormone-Binding Globulin (SHBG), Raman spectroscopy was employed as a structural 

validation tool for our in silico model. Raman spectroscopy is a powerful vibrational technique 

that is both non-destructive and highly sensitive to molecular structure, particularly capable of 

probing the backbone conformation and side-chain environment of proteins. The technique’s 

sensitivity to vibrational modes such as C=O stretching in the amide backbone (primarily the 

Amide I band, 1600–1700 cm⁻¹) is informative for assessing secondary structural elements, 

including α-helices, β-sheets, and turns
53-55

. 

4.3.1 Instrumentation and Experimental Setup 

All Raman measurements were conducted using the Horiba XploRa PLUS confocal Raman 

microscope equipped with a thermoelectrically cooled CCD detector maintained at -70°C. 

Spectral acquisition utilized a 1200 gr/mm diffraction grating blazed at 750 nm, providing a 

spectral resolution of 1 cm⁻¹. The excitation source was a 785 nm near-infrared solid-state diode 

laser, selected to minimize fluorescence interference and sample degradation; power at the 

sample was maintained at approximately 41 mW. To ensure spatial resolution and spectral 
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clarity, the spectrometer slit width was set to 200 µm and the confocal pinhole aperture to 500 

µm. Prior to each batch of measurements, the system was calibrated using a silicon wafer, 

aligning the 520.7 cm⁻¹ reference peak for spectral accuracy. SHBG samples (20 µM in sodium 

phosphate buffer, pH 7.4) were measured in a total volume of 20 µL, and each spectrum was 

normalized to the sharp, reproducible band at 330 cm⁻¹, which served as an internal standard. 

Each spectrum was acquired with an integration time of 180 seconds, and four consecutive 

spectra were recorded per sample to enhance signal-to-noise ratio and to enable robust cosmic 

ray rejection. 

4.3.2 Baseline Correction and Denoising 

Raw spectra inherently contain noise components and fluorescence background that must be 

carefully removed prior to quantitative analysis. These steps were performed using Labspec 6 

software (Horiba Scientific). 

Baseline-Subtraction: Fluorescence background was removed using a polynomial baseline 

correction method. Specifically, a 7th-order polynomial fitting algorithm was applied to the 

entire spectral window. This polynomial order was selected empirically to best model the 

complex curvature typically seen in protein spectra, particularly in the Amide I region. The 

polynomial was iteratively fit to non-peak regions of the spectrum using a moving anchor point 

algorithm, and then subtracted from the raw signal to flatten the baseline across the entire range. 

Spectral-Denoising: After baseline correction, Horiba’s built-in denoising algorithm (standard 

mode) was applied. This method utilizes a Savitzky-Golay filter, conFig.d with a window width 

of 11 points and a second-order polynomial smoothing function
56

. This setting balances retention 

of spectral features with effective noise suppression, minimizing distortion of narrow peaks, 

particularly in the Amide I band. 

Cosmic-Ray-Removal: An automatic cosmic ray rejection filter integrated into the acquisition 

routine was engaged during multi-scan accumulation. This filter uses a threshold-based pixel 

comparison across successive scans to identify and eliminate sharp, non-reproducible spikes. 

4.3.3 Secondary Structure Analysis from Raman Spectra 
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Raman-based structural analysis was carried out to analyze the Amide I region (1600–1700 

cm⁻¹), which is sensitive to secondary structure due to C=O stretching vibrations in the protein 

backbone
57

. 

Spectral-Deconvolution: Deconvolution was performed using Gaussian-Lorentzian mixed curve 

fitting within the Labspec 6 software. The Amide I envelope was decomposed into its component 

bands corresponding to distinct secondary structure types. Initial peak positions and widths were 

selected based on prior literature for protein spectra. 

Peak fitting employed a Levenberg–Marquardt least-squares optimization, with constraints 

placed on full-width at half-maximum (FWHM) values (typically 8–25 cm⁻¹) to prevent 

overfitting. The final fits were evaluated using reduced χ² minimization and visual inspection to 

ensure model fidelity. 

Secondary Structure Quantification: The area under each fitted peak was integrated, and relative 

percentages of secondary structures were calculated by normalizing the peak areas to the total 

Amide I envelope area. This approach assumes a linear proportionality between peak area and 

structural population. 

 

4.3.4 Structure Network Analysis 

The structural network representation of a protein offers a topological analysis of its 3D 

structure, independent of its secondary structure and folding characteristics
46

. Understanding the 

internal motions and structural dynamics of proteins is crucial for elucidating their functions and 

activities. Therefore, we employed normal mode analysis (NMA) to predict functional motions 

within the protein segment
21

. Subsequent to NMA, we conducted correlation analysis to 

construct a cross-correlation matrix. Utilizing correlation network analysis, we created an all-

residue network using in-silico model structure of SHBG. This all-residue network was further 

dissected into a network of highly correlated, coarse-grained community clusters using the 

Girvan-Newman clustering method. In these clusters, residues with strong interactions were 

grouped together, forming what we referred to as "structure blocks" (SBs) in our study
47

. 
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4.4 Monte-Carlo simulation 

To investigate the dynamic behavior of the SHBG monomer, we applied the CABS (C-alpha, 

beta, and side chain) coarse-grained protein model (version 0.9.18) using a Monte Carlo 

simulation approach. Key simulation parameters were customized for this study: the random 

seed was set to 3864 to ensure reproducibility, and the number of simulation cycles (Ncycle) was 

defined as 100, resulting in a trajectory of 2,000 models (20 × 100). To control the frequency of 

model output, the 'cycles between trajectory frames' (Nskipped) was set to 100, producing a total of 

200,000 models (20 × 100 × 100) throughout the simulation. The simulation temperature was 

maintained at T = 1.2, representing conditions close to the protein’s native state. All other 

simulation parameters followed the default settings specified by the CABS model. 

 

4.5 Analysis of the Contact Map for Critical Subnetwork Identification 

The interaction between residue pairs and the strength of their interaction were depicted through 

a contact map. This map provided a visual representation of the interacting residues and the 

magnitude of their interactions. In order to differentiate notable contacts from the negligible 

ones, we considered a threshold for the 'Contact' values. Analyzing the distribution of these 

values allowed for the determination of a threshold based on the median contact value. This 

threshold effectively segregated high-affinity contacts from lower ones. 

A graph-based representation of the protein contact map was constructed using the NetworkX 

library (version 3.4.2) in Python. In this graph, individual residues were modeled as nodes, while 

edges represented significant residue-residue contacts that exceeded a predefined interaction 

threshold. By analyzing the connected components within the graph, we identified discrete 

structural subnetworks or ‘islands’, which may correspond to functionally or structurally critical 

regions within the SHBG protein. 

We prioritized connected components by size, selecting the largest component for further 

analysis as it represented the most significant subnetwork in terms of involved residues.  

 

4.5.1 Graphical Representation of the Main Island 
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We positioned nodes using a spring layout, ensuring a balanced spatial distribution. Node size 

corresponded to their degree, aiding in the identification of highly connected residues (hubs) 

within the network. Here the nodes were color-coded to represent their sequential position within 

the protein, forming a gradient that visually mapped the progression from the N-terminus to the 

C-terminus. Additionally, nodes representing residues with a high degree were labeled, 

emphasizing their potential significance in the protein structure. We adjusted edges in the graph 

to increase transparency, reducing visual clutter arising from the dense network of connections. 

The analysis employed Python, leveraging critical libraries like Pandas for data manipulation, 

Matplotlib and Seaborn for data visualization, and NetworkX for graph-theoretical analyses. 

Handling protein structure data involved the use of the BioPython library for parsing and 

management. 

 

4.5.2 Asynchronous Label Propagation for Community Detection 

We employed the Asynchronous Label Propagation algorithm to analyze the contact map derived 

from the Root-Mean-Square Fluctuation (RMSF) distribution of protein simulations. We 

considered this algorithm due to its efficiency in managing/dealing large-scale networks and for 

revealing the inherent modular structure within the contact map. 

 

Here are the descriptions of the Algorithm used: 

Initialization: Each node (i) representing amino acid residues was initialized with a unique label 

Li. 

Convergence: The algorithm iterated until a steady state was achieved, with no label changes or 

upon reaching the maximum iterations. 

Gradient Boosting Regressor for RMSF Modeling: 

We utilized the Gradient Boosting Regressor to model RMSF data of protein amino acid 

residues, aiming to predict RMSF values based on residue properties. The regressor constructed 

an ensemble of weak prediction models, minimizing a loss function through gradient descent. 
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Loss Function Minimization: The ensemble model prediction was optimized by minimizing the 

loss function. 

Distinguishing Clique Communities: We identified clique communities within the protein 

contact map to unveil tightly interconnected residue clusters. Maximal cliques were detected, 

ensuring that every pair of nodes within a clique was interconnected. 

 

4.6 Protein Purification 

In order to overexpress the SHBG protein, we transiently transfected HEK293 cells with 

plasmids mixed with transfection reagents at an optimal ratio. We cultured the cells in a serum-

free medium, maintaining them in Erlenmeyer flasks or a bioreactor under stirring conditions at 

37°C for 6 days. After harvesting, we centrifuged the cell culture broth to separate the 

supernatant, which we then loaded onto an affinity purification column at an appropriate flow 

rate. Finally, we analyzed the purified proteins by SDS-PAGE to assess their purity and 

molecular weight. 

References 

1 Hammond, G. L. & Bocchinfuso, W. P. Sex hormone-binding globulin: gene 

organization and structure/function analyses. Hormone Research in Paediatrics 45, 197-

201 (1996). 

2 Avvakumov, G. V., Cherkasov, A., Muller, Y. A. & Hammond, G. L. Structural analyses 

of sex hormone-binding globulin reveal novel ligands and function. Molecular and 

cellular endocrinology 316, 13-23 (2010). 

3 Guadarrama-García, C., Bello, M. & Soriano-Ursúa, M. Molecular insights into how 

SHBG dimerization exerts changes on ligand molecular recognition. The Journal of 

Steroid Biochemistry and Molecular Biology 197, 105502 (2020). 

4 Hammond, G. L. Diverse roles for sex hormone-binding globulin in reproduction. 

Biology of reproduction 85, 431-441 (2011). 

5 Hammond, G. L. Potential functions of plasma steroid-binding proteins. Trends in 

Endocrinology & Metabolism 6, 298-304 (1995). 

6 Baker, M. Beyond carrier proteins: albumin, steroid hormones and the origin of 

vertebrates. J Endocrinol 175, 121-127 (2002). 

7 Hammond, G. L. Access of reproductive steroids to target tissues. Obstetrics and 

Gynecology Clinics 29, 411-423 (2002). 

8 Avvakumov, G. V., Grishkovskaya, I., Muller, Y. A. & Hammond, G. L. Resolution of 

the human sex hormone-binding globulin dimer interface and evidence for two steroid-

binding sites per homodimer. Journal of Biological Chemistry 276, 34453-34457 (2001). 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

9 Wu, T.-S. & Hammond, G. L. Naturally occurring mutants inform SHBG structure and 

function. Molecular endocrinology 28, 1026-1038 (2014). 

10 Bocchinfuso, W. P. & Hammond, G. L. Steroid-binding and dimerization domains of 

human sex hormone-binding globulin partially overlap: steroids and Ca2+ stabilize dimer 

formation. Biochemistry 33, 10622-10629 (1994). 

11 Hildebrand, C., Bocchinfuso, W. P., Dales, D. & Hammond, G. L. Resolution of the 

steroid-binding and dimerization domains of human sex hormone-binding globulin by 

expression in Escherichia coli. Biochemistry 34, 3231-3238 (1995). 

12 Grishkovskaya, I., Avvakumov, G. V., Hammond, G. L., Catalano, M. G. & Muller, Y. 

A. Steroid ligands bind human sex hormone-binding globulin in specific orientations and 

produce distinct changes in protein conformation. Journal of Biological Chemistry 277, 

32086-32093 (2002). 

13 Gao, W., Bohl, C. E. & Dalton, J. T. Chemistry and structural biology of androgen 

receptor. Chemical reviews 105, 3352-3370 (2005). 

14 Hammond, G. L. & Bocchinfuso, W. P. Sex hormone-binding globulin/androgen-binding 

protein: steroid-binding and dimerization domains. The Journal of Steroid Biochemistry 

and Molecular Biology 53, 543-552 (1995). 

15 Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. nature 596, 

583-589 (2021). 

16 Gomes, P. S., Gomes, D. E. & Bernardi, R. C. Protein structure prediction in the era of 

AI: Challenges and limitations when applying to in silico force spectroscopy. Frontiers in 

Bioinformatics 2, 983306 (2022). 

17 Perrakis, A. & Sixma, T. K. AI revolutions in biology: The joys and perils of AlphaFold. 

EMBO reports 22, e54046 (2021). 

18 Evans, R. et al.     (2022). 

19 Chowdhury, S. et al. Evolutionary analyses of sequence and structure space unravel the 

structural facets of SOD1. Biomolecules 9, 826 (2019). 

20 Varricchio, L. et al. Calreticulin: challenges posed by the intrinsically disordered nature 

of calreticulin to the study of its function. Frontiers in cell and developmental biology 5, 

96 (2017). 

21 Bahar, I. & Rader, A. Coarse-grained normal mode analysis in structural biology. 

Current opinion in structural biology 15, 586-592 (2005). 

22 May, L. T., Leach, K., Sexton, P. M. & Christopoulos, A. Allosteric modulation of G 

protein–coupled receptors. Annu. Rev. Pharmacol. Toxicol. 47, 1-51 (2007). 

23 Caltabiano, G. et al. The specificity of binding of glycoprotein hormones to their 

receptors. Cellular and molecular life sciences 65, 2484-2492 (2008). 

24 Herington, A., Ymer, S. & Stevenson, J. Identification and characterization of specific 

binding proteins for growth hormone in normal human sera. The Journal of clinical 

investigation 77, 1817-1823 (1986). 

25 Hammond, G., Smith, C. & Underhill, D. Molecular studies of corticosteroid binding 

globulin structure, biosynthesis and function. The Journal of steroid biochemistry and 

molecular biology 40, 755-762 (1991). 

26 Lin, H.-Y., Muller, Y. A. & Hammond, G. L. Molecular and structural basis of steroid 

hormone binding and release from corticosteroid-binding globulin. Molecular and 

cellular endocrinology 316, 3-12 (2010). 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

27 Hocman, G. Human thyroxine binding globulin (TBG). Reviews of Physiology, 

Biochemistry and Pharmacology, Volume 91: Volume: 91, 45-89 (2005). 

28 Zhou, A., Wei, Z., Read, R. J. & Carrell, R. W. Structural mechanism for the carriage and 

release of thyroxine in the blood. Proceedings of the National Academy of Sciences 103, 

13321-13326 (2006). 

29 Raymoure, W. J., McNaught, R. W. & Smith, R. G. Reversible activation of non-steroid 

binding oestrogen receptor. Nature 314, 745-747 (1985). 

30 Hadcock, J. R. & Maibon, C. C. Regulation of receptor expression by agonists: 

transcriptional and post-transcriptional controls. Trends in neurosciences 14, 242-247 

(1991). 

31 Lee, K. & Cohen, P. Beyond carrier proteins. Nuclear effects: Unexpected intracellular 

actions of insulin-like growth factor binding protein-3. J Endocrinol 175, 33-40 (2002). 

32 Hammond, G. L. Plasma steroid-binding proteins: primary gatekeepers of steroid 

hormone action. The Journal of endocrinology 230, R13 (2016). 

33 Hammond, G. L. Molecular properties of corticosteroid binding globulin and the sex-

steroid binding proteins. Endocrine reviews 11, 65-79 (1990). 

34 Grasa, M. d. M. et al. Modulation of SHBG binding to testosterone and estradiol by sex 

and morbid obesity. European journal of endocrinology 176, 393-404 (2017). 

35 Qu, X. & Donnelly, R. Sex hormone-binding globulin (SHBG) as an early biomarker and 

therapeutic target in polycystic ovary syndrome. International journal of molecular 

sciences 21, 8191 (2020). 

36 Ramsey, J. M., Cooper, J. D., Penninx, B. W. & Bahn, S. Variation in serum biomarkers 

with sex and female hormonal status: implications for clinical tests. Scientific reports 6, 

26947 (2016). 

37 Toljan, K., Grgić, F., Pavičić Baldani, D., Jurković, I. & Šprem Goldštajn, M. Sex 

hormone binding globulin (SHBG) as a marker of clinical disorders. Collegium 

antropologicum 40, 199-209 (2016). 

38 Hogeveen, K. N. et al. Human sex hormone–binding globulin variants associated with 

hyperandrogenism and ovarian dysfunction. The Journal of clinical investigation 109, 

973-981 (2002). 

39 Grishkovskaya, I. et al. Crystal structure of human sex hormone‐binding globulin: steroid 

transport by a laminin G‐like domain. The EMBO journal (2000). 

40 Romero, P. et al. Sequence complexity of disordered protein. Proteins 42, 38-48 (2001). 

41 Peng, K., Radivojac, P., Vucetic, S., Dunker, A. K. & Obradovic, Z. Length-dependent 

prediction of protein intrinsic disorder. BMC Bioinformatics 7, 208, doi:1471-2105-7-208 

[pii]10.1186/1471-2105-7-208 (2006). 

42 Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K. & Uversky, V. N. PONDR-

FIT: A meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 

1804, 996-1010, doi:S1570-9639(10)00013-0 [pii]10.1016/j.bbapap.2010.01.011 (2010). 

43 Dosztanyi, Z., Csizmok, V., Tompa, P. & Simon, I. IUPred: web server for the prediction 

of intrinsically unstructured regions of proteins based on estimated energy content. 

Bioinformatics 21, 3433-3434, doi:bti541 [pii]10.1093/bioinformatics/bti541 (2005). 

44 Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein 

structure and function prediction. Nature protocols 5, 725 (2010). 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

45 Sanyal, D. et al. An integrated understanding of the evolutionary and structural features 

of the SARS-CoV-2 spike receptor binding domain (RBD). International Journal of 

Biological Macromolecules 217, 492-505 (2022). 

46 Grant, B. J., Rodrigues, A. P., ElSawy, K. M., McCammon, J. A. & Caves, L. S. Bio3d: 

an R package for the comparative analysis of protein structures. Bioinformatics 22, 2695-

2696 (2006). 

47 Girvan, M. & Newman, M. E. Community structure in social and biological networks. 

Proceedings of the national academy of sciences 99, 7821-7826 (2002). 

48 Kurcinski, M. et al. CABS-flex standalone: a simulation environment for fast modeling 

of protein flexibility. Bioinformatics 35, 694-695, doi:10.1093/bioinformatics/bty685 %J 

Bioinformatics (2018). 

49 Tuma, R. Raman spectroscopy of proteins: from peptides to large assemblies. Journal of 

Raman Spectroscopy: An International Journal for Original Work in all Aspects of 

Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and 

Rayleigh Scattering 36, 307-319 (2005). 

50 Rygula, A. et al. Raman spectroscopy of proteins: a review. Journal of Raman 

Spectroscopy 44, 1061-1076 (2013). 

51 Benevides, J. M., Overman, S. A. & Thomas Jr, G. J. Raman spectroscopy of proteins. 

Current protocols in protein science 33, 17.18. 11-17.18. 35 (2003). 

52 Lippert, J., Tyminski, D. & Desmeules, P. Determination of the secondary structure of 

proteins by laser Raman spectroscopy. Journal of the American Chemical Society 98, 

7075-7080 (1976).  

53. Tuma, R., Raman spectroscopy of proteins: from peptides to large assemblies. Journal of 

Raman Spectroscopy: An International Journal for Original Work in all Aspects of 

Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and 

Rayleigh Scattering 2005, 36 (4), 307-319. 

54. Rygula, A.;  Majzner, K.;  Marzec, K. M.;  Kaczor, A.;  Pilarczyk, M.; Baranska, M., 

Raman spectroscopy of proteins: a review. Journal of Raman Spectroscopy 2013, 44 (8), 

1061-1076. 

55. Punzalan, J. M.;  Hartono, P.;  Fraser‐Miller, S. J.;  Leong, S. Y.;  Sutton, K.;  Moggre, G. 

J.;  Oey, I.; Gordon, K. C., Fingerprinting of Semi‐Refined Flaxseed Protein Using 

Raman Spectroscopy and Multivariate Analysis: Pulsed Electric Field (PEF)‐Assisted 

Alkali and Aqueous Extraction Methods Alter Composition and Protein Conformation. 

Journal of Raman Spectroscopy 2025. 

56. Huang, J.;  Shi, T.;  Gong, B.;  Li, X.;  Liao, G.; Tang, Z., Fitting an optical fiber 

background with a weighted Savitzky–Golay smoothing filter for Raman spectroscopy. 

Applied Spectroscopy 2018, 72 (11), 1632-1644. 

57. Chowdhury, S.;  Sen, S.;  Banerjee, A.;  Uversky, V. N.;  Maulik, U.; Chattopadhyay, K., 

Network mapping of the conformational heterogeneity of SOD1 by deploying statistical 

cluster analysis of FTIR spectra. Cellular and Molecular Life Sciences 2019, 76 (20), 

4145-4154. 


