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CLINICAL HIGHLIGHTS
� Loss of muscle mass with aging and certain noncommunicable diseases (e.g., cancer, COPD, and others) is associ-

ated with increased mortality. Thus, understanding the mechanisms controlling skeletal muscle hypertrophy can
help determine the most effective interventions to preserve or enhance muscle mass.

� Studies in animals and humans suggest that mechanical overload (e.g., resistance training) best achieves skeletal mus-
cle hypertrophy. Bouts of mechanical overload induce transient increases in mammalian/mechanistic target of rapamy-
cin complex 1 (mTORC1) signaling leading to elevations in muscle protein synthesis rates. With repeated bouts of
mechanical overload, these events contribute to skeletal muscle hypertrophy.

� An expansion in translational capacity through ribosome biogenesis and increases in satellite cell abundance
and myonuclear accretion also contribute to skeletal muscle hypertrophy following days to weeks of repeated
mechanical overload bouts.

� Aside from these three aforementioned mechanisms, several lines of past, current, and emerging research suggest that
other mechanisms may also contribute to mechanical overload-induced skeletal muscle hypertrophy (e.g., mTORC1-in-
dependent signaling, microRNAs, genetic polymorphisms, and enhanced angiogenesis among others).

� There are also potential manners in which epigenetic alterations in myonuclear and mitochondrial DNA, extracellular
matrix remodeling, cytoskeletal remodeling, mitochondrial biogenesis, bioenergetic adaptations, and other mecha-
nisms can contribute to mechanical overload-induced skeletal muscle hypertrophy.

� The current and rapidly emerging molecular tools available to researchers as well as rodent and human studies being
performed in tandem will continue to provide insight into novel mechanisms that are needed for mechanical overload-
induced skeletal muscle hypertrophy to occur.

ROBERTS ET AL., 2023, Physiol Rev 103: 2679–2757
June 29, 2023; Copyright © 2023 The Authors. Licensed under Creative Commons Attribution CC-BY 4.0.
Published by the American Physiological Society.

Downloaded from journals.physiology.org/journal/physrev (063.135.161.169) on April 1, 2024.

http://creativecommons.org/licenses/by/4.0/deed.en_US


MECHANISMSOFMECHANICALOVERLOAD-
INDUCEDSKELETALMUSCLEHYPERTROPHY:
CURRENTUNDERSTANDINGANDFUTURE
DIRECTIONS

Michael D. Roberts,1 John J. McCarthy,2 Troy A. Hornberger,3 Stuart M. Phillips,4 Abigail L. Mackey,5 Gustavo A. Nader,6
Marni D. Boppart,7 Andreas N. Kavazis,1 Paul T. Reidy,8 Riki Ogasawara,9 Cleiton A. Libardi,10 Carlos Ugrinowitsch,11

Frank W. Booth,12 and Karyn A. Esser13

1School of Kinesiology, Auburn University, Auburn, Alabama, United States; 2Department of Physiology, College of Medicine,
University of Kentucky, Lexington, Kentucky, United States; 3Department of Comparative Biosciences, University of Wisconsin-
Madison, Madison, Wisconsin, United States; 4Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; 5Institute
of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg,
and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; 6Department of Kinesiology and Huck
Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States; 7Department of
Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States; 8Department of
Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States; 9Healthy Food Science Research Group, Cellular and
Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan;
10MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University
of São Carlos, São Carlos, Brazil; 11School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil; 12Department of
Biomedical Sciences, University of Missouri, Columbia, Missouri, United States; and 13Department of Physiology and Aging, College of
Medicine, University of Florida, Gainesville, Florida, United States

Abstract

Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively
researched since the landmark report by Morpurgo (1897) of “work-induced hypertrophy” in dogs that were
treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that
involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signal-
ing, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and
myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of
past and emerging evidence suggest that additional mechanisms that feed into or are independent of these
processes are also involved. This review first provides a historical account of how mechanistic research into
skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal mus-
cle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally,
future research directions involving many of the discussed mechanisms are proposed.
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1. INTRODUCTION

Hypertrophy (hy·per·tro·phy)

/hāˈp@rtr@fē/

Noun PHYSIOLOGY

Definition: Increase in the size of a tissue or organ as a
result of an increase in cell size rather than increased
numbers of cells (hyperplasia).

Source: Oxford Dictionary of Sports Science and
Medicine

Skeletal muscle hypertrophy occurs in response to vari-
ous loading paradigms over prolonged periods, and
these stimuli have been deemed as providing “mechani-
cal overload” to the involved musculature. There are vari-
ous methods to achieve mechanical overload in animals
including the surgical removal of synergist muscles (i.e.,
synergist ablation), simulated resistance training through
electrical hindlimb stimulation, loaded wheel running,
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weighted ladder climbing, weighted sled pulling,
weighted limb stretches, and resistance-loaded devices
to challenge animals as they obtain food. Mechanical
overload in humans is most adequately achieved through
progressive resistance training. When performed consis-
tently, resistance training over an 8- to 16-wk period can
lead to a 5–20% increase in skeletal muscle volume or
mass in younger to middle-aged adults (1).
Over the past 40 years researchers have sought to

identify the mechanisms that are associated with me-
chanical overload-induced skeletal muscle hypertrophy.
These investigations have led to a plethora of compre-
hensive reviews on this topic (2–52), and the word cloud
sizing in the graphical abstract is representative of these
viewpoints.
Although sections of the present review rearticulate

excellent perspectives from these reviews, the broader
aims here are to 1) provide a historical perspective of the
early discoveries in the field (�late 1800s to 1940s), dis-
cuss animal and human studies from the 1960s to
2000s that were the first to mechanistically interrogate
mechanical overload-induced skeletal muscle hypertro-
phy, and highlight how these studies have guided

current-day research efforts; 2) discuss highly investi-
gated mechanisms that are thought to promote skeletal
muscle hypertrophy, as well as opposing evidence when
applicable; and 3) posit mechanisms that may be involved
in promoting skeletal muscle hypertrophy but have little
to no evidence and warrant further investigation. Other
sections of the present review include discussions on
skeletal muscle architecture, methodological considera-
tions with skeletal muscle hypertrophy research, and an
abbreviated discussion focused on how sex, race, and
aging affect hypertrophic outcomes.

2. BRIEF OVERVIEW: MUSCLE AS TISSUE,
MYOFIBERS, THE EXTRACELLULAR
MATRIX, AND OTHER RESIDENT CELLS

Mammalian muscle cells (a.k.a. myofibers) are typically
considered postmitotic (or nondividing) and possess a
unique structure in that they are multinucleated and the
largest mammalian cells with a tubular morphology (53).
It has been posited that myofibers require multiple
nuclei to regulate cellular homeostasis (i.e., the myonu-
clear domain theory) (51, 54). Most of the intracellular
area in myofibers is occupied by myofibrils (�70–85%)
(55–57), and these specialized organelles consist of
thick filaments, thin filaments, and other associated pro-
teins. These proteins contribute to active and passive
force generation as well as sarcomere structure for mus-
cle contraction. A cytoskeletal network is also present
within myofibers and consists of actin, microtubules,
microfilaments, and other associated proteins that
anchor nuclei and myofibrils within the cell, while also
serving as a scaffold for force transmission (58). Proteins
enriched in myofibers have been subclassified into dif-
ferent categories including (59) 1) contractile proteins
(e.g., myosin, actin, tropomyosin, troponins), 2) sarco-
meric-associated proteins (e.g., titin, myosin binding
protein C, a-actinin, myomesin, and M protein), 3) cytos-
keletal proteins (e.g., tubulin, desmin, and actin), and 4)
membrane-associated proteins (e.g., dystrophin, spec-
trin, talin, vinculin, and ankyrin). Although the ultrastruc-
tural characteristics of myofibers have been largely
limited to two-dimensional analyses, the Glancy labo-
ratory (60) has recently used three-dimensional ion
beam scanning electron microscopy (FIB-SEM) to
show that myofibers contain interconnected myofibrils
whereby branching is higher in slow-twitch versus
fast-twitch myofibers in adult mice.
Some of the intracellular space within myofibers (�5–

10%) is also occupied by the mitochondrial reticulum and
sarcoplasmic reticulum, and these organelles are pri-
marily responsible for supporting muscle contraction
through adenosine triphosphate (ATP) replenishment

CLINICAL HIGHLIGHTS

� Loss of muscle mass with aging and certain noncommunicable
diseases (e.g., cancer, COPD, and others) is associated with
increased mortality. Thus, understanding the mechanisms con-
trolling skeletal muscle hypertrophy can help determine the
most effective interventions to preserve or enhance muscle
mass.

� Studies in animals and humans suggest that mechanical overload
(e.g., resistance training) best achieves skeletal muscle hypertro-
phy. Bouts of mechanical overload induce transient increases in
mammalian/mechanistic target of rapamycin complex 1 (mTORC1)
signaling leading to elevations in muscle protein synthesis rates.
With repeated bouts of mechanical overload, these events con-
tribute to skeletal muscle hypertrophy.

� An expansion in translational capacity through ribosome bio-
genesis and increases in satellite cell abundance and myonu-
clear accretion also contribute to skeletal muscle hypertrophy
following days to weeks of repeated mechanical overload
bouts.

� Aside from these three aforementioned mechanisms, several lines
of past, current, and emerging research suggest that other mech-
anisms may also contribute to mechanical overload-induced skel-
etal muscle hypertrophy (e.g., mTORC1-independent signaling,
microRNAs, genetic polymorphisms, and enhanced angiogenesis
among others).

� There are also potential manners in which epigenetic altera-
tions in myonuclear and mitochondrial DNA, extracellular matrix
remodeling, cytoskeletal remodeling, mitochondrial biogenesis,
bioenergetic adaptations, and other mechanisms can contribute
to mechanical overload-induced skeletal muscle hypertrophy.

� The current and rapidly emerging molecular tools available to
researchers as well as rodent and human studies being per-
formed in tandem will continue to provide insight into novel mech-
anisms that are needed for mechanical overload-induced skeletal
muscle hypertrophy to occur.
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and calcium handling, respectively (61). Again, the Glancy
laboratory (62) has also provided excellent insight into
muscle mitochondrial structure, using FIB-SEM to develop
the hypothesis that membrane potential conduction is
the prominent pathway for skeletal muscle energy dis-
tribution. The cytoplasm (a.k.a. sarcoplasm) is an
aqueous medium that facilitates the exchange of ions
and metabolites to and from different organelles (8).
Several enzymes, proteins, and protein complexes
that facilitate anabolic and catabolic reactions also re-
side in the sarcoplasm. The cell membrane of myofib-
ers is termed the sarcolemma, and this structure
contains transmembrane proteins that aid in ion trans-
port, nutrient transport, ligand-receptor signaling, and
the anchoring of intracellular cytoskeletal proteins to
the extracellular matrix (8). The latter of these func-
tions is responsible for force transmission during mus-
cle contraction from the Z disk to the basal lamina via
the dystrophin-glycoprotein and integrin adhesion
complexes (63).
The basal lamina is a thin layer of connective tissue

that sheaths myofibers, is linked to the sarcolemma
through protein-protein interactions, and is considered
part of the extracellular matrix (64). Proteins enriched in
the basal lamina include fibronectin, laminin, a-dystro-
glycan, and other proteins that participate in the sarco-
lemmal protein-protein interactions discussed above
(65). The thick fibrillar extracellular matrix (a.k.a. the in-
terstitial matrix) is mainly comprised of collagen proteins
and various extracellular growth factors (65). In muscle
tissue, a variety of cell types reside in the extracellular
matrix and include resident immune cells, fibro-adipo-
genic progenitor cells, fibroblasts, adipocytes, endothe-
lial cells, and pericytes (66). At the interface between the
sarcolemma of myofibers and the basal lamina are satel-
lite cells. Microscopic evidence supports that myofibers,
rather than stromal cells of the extracellular matrix, spa-
tially occupy �85–90% of muscle tissue (67). This is
largely due to myofiber cross-sectional areas in adults
typically averaging between 5,000 and 6,000 lm2 and
the cell bodies of stromal cells only being slightly larger
than their nuclei, which (although not commonly meas-
ured) average to be <100 lm2 (68, 69). However, it
should be noted that the extracellular matrix contains
numerous stromal cell types that outnumber the pres-
ence of myofibers. In this regard, histological examina-
tions of muscles from young healthy adults suggest that
per 100 myofibers there are �10 satellite cells (70), �2
lymphocytes and �20 macrophages (71, 72), �30 fibro-
adipogenic progenitor cells (73), �13 fibroblasts (74),
�35 pericytes (75), and �200 capillaries, which are
comprised of endothelial cells (76, 77). Thus, cells resid-
ing in the extracellular matrix potentially outnumber
myofibers at a ratio of �3:1, and this estimate does not

consider age-related changes or the influx of cells into
muscle tissue following exercise bouts or injury (e.g.,
neutrophils and macrophages) (71, 78).
Single-nucleus sequencing studies in rodents have

recently provided estimates of the cell types contained
in muscle tissue (66, 79). These investigations suggest
that of the total nuclear pool in skeletal muscle tissue
�50–70% are associated with myofibers, 20% are from
fibro-adipogenic progenitor cells, 17% are from endothe-
lial cells, 4% are from pericytes, 3% are neuronal, 3% are
from macrophages, 2% are from satellite cells, and 1%
are from neutrophils. Notably, these estimates are not
constant, since some reports suggest that slow-twitch
myofibers contain more nuclei per fiber than fast-twitch
fibers (80, 81), and immune cell abundance is also higher
in slow-twitch versus fast-twitch muscles (82). FIGURE 1
provides a summary diagram of content discussed in
this section of the review, and readers are referred to
other recent reviews providing related schematics (1, 48,
58, 65, 83–85).
A final topic of discussion in this section is myofiber

type classification and some of the characteristic differ-
ences that exist between myofiber types. As described
by Schiaffino and Reggiani (86), mammalian skeletal
muscle contains different myofiber types that can be dif-
ferentiated by either myosin isoforms and contraction
speed or metabolic characteristics such as oxidative
capacity. Whereas the authors explained the history of
past methods used for fiber type classification (e.g., red
vs. white appearance and histological classifications
using succinate dehydrogenase and myosin ATPase
staining), monoclonal antibodies against different myo-
sin heavy chain isoforms developed in the 1980s have
been widely used via immunohistochemistry to report
myofiber type adaptations to mechanical overload (87).
The four predominant mammalian myosin heavy chain
isoforms include the slow-twitch type I isoform (encoded
by theMYH7 gene) and fast-twitch isoforms including IIA
(encoded by theMYH2 gene), IIX (encoded by theMYH1
gene), and IIB (encoded by the MYH4 gene) (86).
Although most fibers express a prominent myosin heavy
chain isoform, hybrid myofibers coexpressing multiple
isoforms in humans have been reported with histochem-
ical and electrophoresis-based techniques (88–93).
Notwithstanding, several studies suggest that the com-
monly biopsied vastus lateralis (VL) muscle in men and
women contains a high percentage of type I myofibers
(�30–50%) and type IIA 1 IIA/X hybrid fibers (�40–
50%) and �5% of I/II-coexpressing hybrid myofibers and
�2% of type IIX myofibers (88, 91, 94, 95). Moreover, a
common adaptation to resistance training (and endur-
ance training) in humans is the rapid downregulation of
IIX gene expression and shift of IIX1 IIA/X to IIA myofib-
ers (96, 97).
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Intracellular morphology may differ between type I
and IIA/X myofibers, albeit this may depend on species.
Beyond myosin typing, the characterization of metabolic
features within muscle fibers gets more complex (93), so
again it is important to consider the muscle analyzed
and species. In rats, Schiaffino et al. (98) used transmis-
sion electron microscopy (TEM) to report that slow-
twitch soleus myofibers (which possess >90% type I
fibers) contain more mitochondria in cross section rela-
tive to extensor digitorum longus (EDL) myofibers (which
possess >90% type II fibers). These authors also
reported that myofibril diameters are larger in fast-twitch
EDL myofibers, although Z disks are slightly thicker, and

sarcomeres are slightly longer in slow-twitch soleus
myofibers. These myofiber type morphology differences
in rats are not as dramatic in humans. For instance,
Alway and colleagues (57) reported that type I and II
myofibers from gastrocnemius and soleus biopsies in
men spatially possess �5% and �3% mitochondria,
respectively, whereas myofibril area occupies similar in-
tracellular spacing in both fiber types (�80%). Ruple et
al. (55) more recently used immunohistochemistry to
report that type I and II myofibers from the VL muscle in
men spatially possess �5–6% mitochondria, whereas
myofibril area occupied similar intracellular spacing in
both fiber types (�80%), and this largely agrees with a

FIGURE 1. Skeletal muscle fiber components and biological processes. This schematic (constructed with BioRender.com, with permission) illustrates
the molecular attributes and processes that occur in a myofiber. A represents an individual myofiber in cross section as well as some of the stromal
cells that exist in the extracellular matrix. B depicts the neuromuscular junction and how the ligand binding of acetylcholine (ACh) can lead to myofiber
activation through voltage-gated sodium (Na1) channels. C shows an individual myofibril and some of the prominent proteins that make up the struc-
ture of the sarcomere. D shows a single myonucleus, some of its key structures (e.g., chromatin), and some of its functions (e.g., RNA transcription and
output). E depicts a portion of the mitochondrial reticulum, some of its key structures (e.g., mitochondrial DNA), and some of its key functions (e.g., pro-
ducing ATP and metabolites). F shows the interface of the extracellular matrix (ECM) and muscle cell membrane (or sarcolemma), and signaling through
growth factor receptors and laminin-integrin complexes are also summarized. G shows a portion of the sarcoplasm (which makes up<10% of the myo-
fiber spatially), some of the features between myofibrils (e.g., glycogen granules and lipid droplets), and some of the many reactions that can occur in
this region (note that protein synthesis can also occur at ribosomes localized in close proximity to myofibrils). FAP, fibro-adipogenic progenitor cell; K1,
potassium; mTORC1, mammalian target of rapamycin complex 1.

ROBERTS ET AL.

2682 Physiol Rev �VOL 103 � OCTOBER 2023 � www.prv.org

Downloaded from journals.physiology.org/journal/physrev (063.135.161.169) on April 1, 2024.

http://www.prv.org


prior study by Wang et al. (99), who used TEM to interro-
gate type I and II myofiber characteristics from VL muscle
tissue in 12 women. Also notable are the data from Wang
and colleagues suggesting that myofibril size (�0.70
lm2) and density (1.06 myofibrils per lm2) are similar in
type I and IIA myofibers in humans. Interestingly, recent
protein expression profiling between type I and II myofib-
ers in humans indicates that, of the �3,800 proteins
detected, �400 (or 10%) show significant fiber type-
specific differences. Hence, these proteome profiles
between type I and II myofibers, rather than robust
morphology differences, likely drive the divergence in
cellular phenotypes (i.e., oxidative potential, force
generation, and excitation-contraction coupling char-
acteristics) (100).

3. A HISTORICAL ACCOUNT OF RESISTANCE
TRAINING RESEARCH, MECHANICAL
OVERLOAD STUDIES IN RODENTS, AND
THE MOLECULAR INTERROGATION OF
MUSCLE HYPERTROPHY

Research into skeletal muscle hypertrophy has flour-
ished over the past 50 years. However, a general inter-
est in this topic has existed for several millennia. Milo of
Croton (�6th century B.C.) is considered by most to be
the first documented practitioner of progressive resist-
ance training. According to anecdote and written history,
Milo hauled a newborn calf (which developed into a full-
grown bull) over his shoulders daily for nearly 4 years,
leading to enhancements in muscle mass and strength
(101). Despite the clear implications of progressive over-
load, scientists would not intensively research resist-
ance training for another two and a half millennia. Much
of the current mainstream interest in resistance training
and skeletal muscle hypertrophy was largely driven by
Eugen Sandow (102), a Prussian bodybuilder and show-
man (�1890s), and Canadian Louis Cyr, who was an avid
weightlifter and strongman (�1880s to 1890s) (103).
The notion that tissue could grow via cellular hypertro-

phy can be traced back to classic work of the German pa-
thologist Rudolf Virchow. In 1858, Virchow (104) published
a study detailing the morphology of lymph nodes through
the use of microscopy. Virchow reported greater cell
counts in enlarged versus normal-appearing lymph nodes
and reported that other organs could grow without
increasing cell number. These observations led to the cur-
rent-day definitions of “hyperplasia” and “hypertrophy”
and inspired Morpurgo’s landmark study published in 1897
showing that skeletal muscle hypertrophy occurs in
response to exercise training (105). Interestingly, Morpurgo
reported that 2 mo of treadmill training increased sartorius
myofiber diameters by �50% without increasing myofiber

number or length, and he termed this phenomenon “work-
induced hypertrophy.” This study was the first scientific
documentation of skeletal muscle hypertrophy in response
to exercise training. Nevertheless, research from the early
1900s to 1930s that examined work-induced hypertrophy
neglected skeletal muscle in favor of cardiac muscle
adaptations (reviewed in Ref. 106), with these studies
utilizing regimens that were endurance training by
today’s standards.
Scientific writings on progressive resistance training

surfaced around the time of Morpurgo’s work. Wilhelm
Roux and Willi Lange authored perspectives between
1895–1917 suggesting that skeletal muscle hypertrophy
occurred when bouts of work intensity routinely excee-
ded that which was performed during normal daily activ-
ities (107). Dr. Theodor Hettinger, a research fellow at
the Max Planck Institute from 1950 to 1960, attributed
the beginnings of resistance training research to studies
published by Petow, Siebert, and Eyster between 1925
and 1927 that documented the strength adaptations to
weightlifting (107). Viewpoints on the hypertrophic and
strength adaptations to resistance training were also
provided in a 1933 commentary by Steinhaus (108) and
in MacFadden’s 1940 Encyclopedia of Health and
Physical Education. In the mid-1930s through the 1940s
entrepreneurs Bob Hoffman (founder of York Barbell
Company) and Joe Weider (founder of the International
Federation of Bodybuilding as well as several main-
stream fitness magazines) largely stoked public interest
in resistance training (109). Skeletal muscle hypertrophy
research was also published in the late 1940s and early
1950s (110–112), albeit these observational human stud-
ies examined masseter muscle hypertrophy due to ex-
cessive chewing or clinching of the jaws under stressful
conditions. As written by Bompa and Haff (113), theories
regarding recovery and adaptation from exercise train-
ing were also published in the 1940s by Folbrot. The tri-
phasic stress response termed the “general adaptation
syndrome” (or “GAS”) by Hans Selye (114) was pub-
lished in this same era, and the exercise physiology
field has largely adopted this model to explain the
stress response to mechanical overload.
In 1945, US Army Captain Dr. Thomas Delorme (115)

reported that progressive resistance training promoted
skeletal muscle hypertrophy and a restoration of muscle
function in rehabilitating soldiers. This publication led to
a flurry of human research into how resistance training
affected strength and local muscle endurance in dis-
eased and rehabilitating patients (116–119). Around the
same time (circa 1949), Novikov and Ozolin published
papers detailing the implementation of complex training
methods (i.e., strength and endurance training) (120).
Although these papers were informative, there would be
a 25-year lapse between these reports and mechanistic
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human investigations since skeletal muscle biopsies
were not widely adopted in the research setting until the
late 1960s.
Although sparse research in the 1950s and early

1960s utilized exercise paradigms in livestock to exam-
ine meat quality outcomes (121, 122), Geoffrey Goldspink
(1964) (123) published the first mechanistic interrogation
of mechanical overload-induced skeletal muscle hyper-
trophy. The author indicated that myofiber and myofibril
diameters are generally larger in mice trained with a re-
sistance-loaded pulley apparatus versus untrained mice,
albeit it is unclear how this interpretation was formulated
given that the light microscopy that was utilized did not
provide clear resolution of myofibrils. Notwithstanding,
this publication, in part, led to a widely adopted mind-
set in the field that resistance training increases myo-
fiber hypertrophy through increasing myofibril size
rather than number. Three years after Goldspink’s
report, Goldberg (124) used tenotomy to elicit hindlimb
skeletal muscle hypertrophy in rats (i.e., functional
overload). This technique was later refined in mice
(125), and these seminal investigations led to the wide-
spread utilization of the synergist ablation model to
study hypertrophic mechanisms. The synergist ablation
model surgically excises a portion of the gastrocne-
mius muscle, which imposes continuous mechanical
overload on the remaining muscle(s). Numerous rodent
studies have utilized various forms of synergist ablation
(126), and although it is generally viewed as a nonphysio-
logical form of rapid hypertrophy, these studies were
foundational for many of the anabolic signaling mecha-
nisms that are discussed here. Interestingly, a 1975
review by Goldberg and colleagues (127) summarizing
findings of studies that utilized these models indicated
that overload-induced skeletal muscle hypertrophy was
largely independent of endocrine factors (e.g., growth
hormone, insulin, testosterone, and thyroid hormones).
This viewpoint has since been supported by research
suggesting that intrinsic signaling mechanisms, such as
mechanotransduction-based signaling, are prominently
responsible for mechanical overload-induced skeletal
muscle hypertrophy (128, 129).
In the 1960s, researchers utilized biochemical assays

to determine how postnatal muscle growth affects tissue
protein, deoxyribonucleic acid (DNA), and ribonucleic
acid (RNA) concentrations in animals (130, 131). First-gen-
eration tracer studies were performed using “hot” radioi-
sotopes in isolated muscles and cell-free preparations in
the late 1950s and early 1960s to determine the fate of
amino acids exposed to cellular environments (132, 133).
These studies inspired subsequent research in the late
1960s and early 1970s by Goldberg, Millward, and
others, who administered radioisotope tracers to live
rodents to determine muscle protein, DNA, and RNA

synthesis rates during different loading paradigms (134–
137). The collective evidence from these studies sup-
ported that mechanical overload increased the synthesis
rates of these macromolecules. Human research examin-
ing skeletal muscle tissue adaptations to resistance train-
ing also surfaced in this same decade because of
skeletal muscle biopsy sampling, pioneered for research
purposes by Jonas Bergstrom in 1962 (138). Penman
(1969) (139) provided the first report in humans that used
TEM to describe the ultrastructural myofiber adaptations
in response to 8 wk of knee extensor resistance training.
In 1970, Penman (140) published a similar report with
three college-aged male participants who underwent 10
wk of resistance training. Although Penman’s investiga-
tions were limited in scope, his scientific approach of
obtaining skeletal muscle tissue from humans who per-
formed resistance training was soon adopted by other
scientists in the field.
In the late 1960s and early 1970s, histological staining

methods were used to characterize the metabolic phe-
notypes of slow- and fast-twitch myofibers. Animal work
by Ogata and Mori (141), Edgerton et al. (142), Barnard et
al. (143), and Brooke and Kaiser (144) and human work
by Edstr€om and Nystr€om (145) were foundational in
establishing several of these techniques. A 1972 paper
by Gollnick et al. (146) built upon Penman’s previous
work given that it was adequately powered from a statis-
tical perspective to compare fiber type characteristics
between weightlifters, endurance-trained athletes, and
untrained participants. The investigators subjected mus-
cle sections to specialized reagents to assess glycogen
content, myosin ATPase activity (for myofiber type), suc-
cinate dehydrogenase and reduced diphosphopyridine
nucleotide-diaphorase (DPNH-diaphorase) activity (for
oxidative capacity), and phosphofructokinase activity
(for glycolytic capacity). Compared with the other partici-
pants, weightlifters were reported to possess larger
myofibers as well as a lower percentage of oxidative
myofibers. In 1973, Schiaffino and Bormioli (147) utilized
similar histological techniques to support that synergist
ablation in rats elicits myofiber growth accompanied by
a shift toward a more oxidative phenotype. Additional
work performed by Schiaffino and colleagues (148) in
the early 1970s, which involved [3H]thymidine adminis-
tration and TEM-based autoradiography, indicated that
satellite cell proliferation occurs days after mechanical
overload induced by synergist ablation in rats. These
authors published a separate report supporting the idea
that satellite cells become incorporated into the myofib-
ers as myonuclei (149). These studies provided the first
evidence that satellite cells have a role in mechanical
overload-induced skeletal muscle hypertrophy and
inspired work in this area of muscle biology described
below in this review.
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The first study to formally assess whether myofiber hy-
pertrophy occurred in humans with resistance training
was published by Thorstensson and colleagues (150) in
1976. Although it was reported that 8 wk of resistance
training increased strength outcomes, slow- and fast-
twitch myofiber cross-sectional area (fCSA) values
were not significantly altered. The authors hypothe-
sized that the duration of training was not long enough
to observe the myofiber hypertrophy reported in the
weightlifters that Gollnick and colleagues examined
(146). Contrary to this report, 1979 reports by Dons et al.
(151) and Costill et al. (152) indicated that myofiber hyper-
trophy occurred after 7 wk of resistance training. That
same year, Moritani and deVries (153) published a land-
mark electromyography paper indicating that neural fac-
tors accounted for the initial strength gains during the first
few weeks of resistance training. The authors also posited
that muscle hypertrophy (as assessed through limb cir-
cumference measurements) became a more influential
factor for continued strength gains thereafter. MacDougall
et al. (154) published a paper in 1980 showing that 6 mo of
resistance training increased slow- and fast-twitch fCSA
values, and the authors utilized TEM to support a mecha-
nism of myofiber growth primarily occurring through the
expansion of the sarcoplasmic space. Although these
findings were provocative, several studies published in
later years would challenge this mode of hypertrophy (1,
155), and this area of the literature remains controversial.
In the 1980s, several research groups continued to detail
the histological, biochemical, and ultrastructural differen-
ces of biopsied muscle between weightlifters and non-
weightlifting participants (56, 57, 156–162). Research by
Staron, Hikida, Dudley, Kraemer, Gonyea, and others in
the 1990s documented how weeks to months of resist-
ance training in previously untrained participants affected
fCSA as assessed by the myosin ATPase staining tech-
nique (99, 163–166). Research by Tesch, Costill, and asso-
ciated colleagues, which employed biochemical assays
and other staining techniques, was also published in this
same era detailing metabolic adaptations in muscle tissue
following months of resistance training (152, 167, 168).
Although hyperplasia has been largely dismissed as a
significant contributor to mammalian skeletal muscle
hypertrophy (1), it is notable that the Gonyea labora-
tory performed experiments on this topic during the
1980s and 1990s by chronically stretching and loading
the anterior latissimus dorsi muscle in quails (169–172)
or performing various forms of resistance training in
cats (173, 174). Indeed, much of the resistance training
research performed during the 1970s and 1980s pro-
vided information on myofiber size and metabolic
adaptations. However, aside from sparse TEM reports
by MacDougall and colleagues and others through the
early 1990s (56, 67, 99, 175), researchers have since

largely neglected examination of the ultrastructural
adaptations that occur in myofibers in response to me-
chanical overload.
Seminal molecular work in the late 1980s, the 1990s,

and the early 2000s led to a research breakthrough
focused on mechanisms associated with skeletal muscle
hypertrophy. One line of research spanning from the
early to late 1990s involved infusing stable isotope trac-
ers into human participants to assess the muscle protein
synthesis and breakdown kinetics to single or multiple
bouts of resistance exercise (176–180). The collective
evidence from these studies indicated that changes in
muscle protein synthetic and breakdown rates were sig-
nificantly elevated for hours to days after resistance
exercise bouts. These findings led to the widely adopted
hypothesis that resistance training facilitates myofiber
hypertrophy through intracellular protein accretion and
that this process is largely driven by pulsatile postexer-
cise increases in muscle protein synthesis that eventu-
ally supersede muscle protein breakdown rates as
individuals become more trained (181). This initial human
tracer research was innovative and foundational in
establishing the more accessible and less invasive
methodology of administering deuterium oxide (D2O) to
humans and rodents through drinking water to assess
longer-term (or integrated) mixed-muscle or myofibrillar
protein synthesis rates (182, 183); notably, these reports
provide cumulative protein synthetic responses ranging
from days to months into training interventions. What is
less appreciated, however, is that the rodent radioiso-
tope tracer work discussed above in this section largely
inspired this line of research in humans.
Another line of innovative molecular research during

this era involved the elucidation of skeletal muscle
mRNA and phosphosignaling responses to mechanical
loading, and again studies in rodents predated human
investigations. In 1990, the Booth laboratory was the first
to document skeletal muscle RNA expression responses
to acute and chronic mechanical overload. In short,
these authors reported that one bout of concentric exer-
cise via hindlimb muscle stimulation against load in rats
did not affect relative expression levels of a-actin mRNA,
cytochrome c mRNA, 18S rRNA, or 28S rRNA in the gas-
trocnemius muscle (184). However, 10 wk of training
increased the overall abundance of these RNAs when
considering training-induced increases in gastrocne-
mius masses. These authors published a second paper
detailing the RNA responses that occurred in rat tibialis
muscles that were eccentrically targeted during the
acute and chronic stimulation models (185). This work
largely guided subsequent research examining the
acute and chronic RNA responses to mechanical over-
load and resistance training in rodents and humans,
respectively. Additionally, this work inspired research
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into how concentric- versus eccentric-only training
affects the molecular milieu in skeletal muscle (186).
In 1999, Baar and Esser (187) published a landmark pa-

per on muscle signaling responses to mechanical over-
load. In short, the authors used Western blotting to
demonstrate that the phosphorylation status of the 70-
kDa S6 protein kinase (p70S6K) protein 6 h after stimu-
lated lengthening contractions was associated with the
degree of muscle hypertrophy in various rat hindlimb
muscles after 6 wk of training using the same stimulation
protocol. This finding was confirmed by Nader and
Esser (2001) (188), who reported that the prolonged
increase in p70S6K and a transient increase in protein
kinase B phosphorylation occur in response to a hyper-
trophy-inducing stimulus but not low-frequency stimula-
tion or running exercise. Notably, studies in humans
published 5–7 years later indicated that similar signaling
responses occur in response to a resistance exercise
bout (189, 190). In 2001, Bodine and colleagues (191) pub-
lished a landmark study that built upon Baar and Esser’s
work showing that rapamycin, a mammalian/mechanistic
target of rapamycin (mTOR) inhibitor, blunted plantaris
hypertrophy following 14 days of mechanical overload
induced by synergist ablation in rats. This response was
also reported to coincide with the diminished phospho-
rylation of p70S6K, which is now appreciated as being a
downstream kinase that is phosphorylated and activated
by mammalian/mechanistic target of rapamycin complex
1 (mTORC1) (192). These findings were, in part, validated
in humans 5 years later by the Rasmussen laboratory,
who reported that rapamycin administration blocks the
early (1–2 h after exercise) increases in muscle protein
synthesis and mTORC1 signaling after a resistance exer-
cise bout (190). Another notable milestone publication
around this time (2000) was the first human muscle
mRNA-omics dataset published by the Peterson labora-
tory (193). These authors isolated muscle RNA from 12
older and 11 younger participants before and 24 h after a
resistance exercise bout and used [32P]ATP labeling dur-
ing cDNA construction (which preceded the currently
used fluorometric technology) before chip hybridiza-
tion reactions. Of the 588 annotated targets the array
provided probes for, the authors reported that vascu-
lar endothelial growth factor (VEGF) mRNA, inflamma-
tory mRNAs (IL-1b and RANTES), and immediate-early
response mRNAs (c-jun, EGR-1) were dynamically
altered at the postexercise time point in both cohorts.
Indeed, this publication led the way to current high-
density microarray and RNA-sequencing (RNA-seq)
investigations whereby load-induced changes in all
annotated muscle mRNAs and several annotated
miRNAs and small RNAs can be interrogated (194–
196). A timeline of studies discussed in this section is
summarized in FIGURE 2.

From the early 2000s to the present day, independent
research groups around the world have utilized assays
to determine the transient RNA, phosphosignaling, and
protein synthetic responses to mechanical overload in
animals and resistance exercise bouts in humans (197–
217). The widespread availability of antibody-conjugated
chromagens and fluorophores to label proteins in myo-
fibers, or cells in the extracellular matrix, has also led to
a greater understanding of the cellular and molecular
signaling responses to resistance training (218–230).
The advancement of genetic mouse models has
enabled the determination of genes that may be crit-
ically involved in promoting load-induced skeletal mus-
cle hypertrophy (231–233). Also notable is the advent
and utilization of various -omics-based techniques in
human and rodent resistance training and mechanical
overload studies. These investigations have included
chip-based genomics (234), chip- and sequencing-
based transcriptomics (194, 195, 235–252), DNA meth-
ylomics (195, 253–258), and mass spectrometry-based
proteomics (100, 195, 259–265), phosphoproteomics
(217, 264, 266–268), and metabolomics (269–271). The
democratization of these techniques has led to a rapid
expansion of molecular data in the field, and current-day
research now involves analyzing large-scale multi-omics-
based datasets. Examples of such efforts include 1) the
implementation of the MetaMEx interactive database by
the Zierath laboratory to elucidate changes in mRNA
expression across 66 exercise studies that contained
muscle transcriptome information (272); 2) work from the
Phillips laboratory that used a variety of bioinformatics
approaches to validate a gene signature responsive to
mechanical loading in humans that was associated with
hypertrophy and in vitro experiments indicating that this
signature is functionally is associated with protein synthe-
sis (250); and 3) the broader goal of the Molecular
Transducers of Physical Activity Consortium (MoTrPAC)
to overlay multiple -omics-based datasets and generate a
molecular map that is triggered by single and multiple
bouts of resistance training (7, 273). These efforts have
and will continue to greatly expand the amount of infor-
mation related to molecular signaling events that are
associated with load-induced skeletal muscle hypertro-
phy. However, the need for research utilizing innovative
genetic rodent models will also persist so that novel sig-
naling mechanisms can be validated through loss- and
gain-of-function studies. The utilization of higher-through-
put in vitro contraction models (see Ref. 274 for example)
is also needed to validate or unveil novel contraction-
induced signaling mechanisms associated with myofiber
hypertrophy. In silico analyses as described by Rupert et
al. (275) can also be performed to develop novel hypothe-
ses in this area of muscle physiology by leveraging online
rodent muscle phenotype, genotype, and transcriptomic
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databases. Finally, refining -omics-based pathway analy-
ses approaches will be instrumental in examining
novel mechanisms associated with mechanical over-
load-induced skeletal muscle hypertrophy. Although
this topic is beyond the scope of this review, an excel-
lent review by Stokes et al. (276) provides guidance in
performing pathway analyses and modeling of -omics
data.

4. METHODOLOGICAL CONSIDERATIONS
WITH SKELETAL MUSCLE HYPERTROPHY
RESEARCH

To fully appreciate the content of this review, readers
should be aware of various methodological aspects
involved in skeletal muscle hypertrophy research includ-
ing tissue processing, limitations to whole tissue lysate
analysis, the interpretation of molecular data, time
course considerations, the general lack of agreement
between surrogate measures of skeletal muscle hyper-
trophy, and the human translatability of rodent studies.

First, muscle-molecular outcomes can be affected by
tissue collection, preservation, and processing methods.
Although many studies indicate that tissue is “immedi-
ately processed and frozen for future analysis,” there is
often little to no description of the time taken to preserve
tissue for the different analyses. Oftentimes researchers
collect animal or human skeletal muscle specimens for
multiple assays, which requires more time to triage and
preserve samples before freezing. A significant time
lapse in tissue processing (e.g., 5 s vs. 10 min) may result
in biomarker quality issues (277), and evidence in
rodents indicates that postmortem delays in tissue proc-
essing cause a linear decay in RNA quality and an expo-
nential decay in phosphoprotein status (278, 279).
Tissue retrieval from deep freeze storage and thawing
to isolate RNA or protein can also have deleterious
effects on RNA and phosphoprotein quality (280, 281).
Finally, histological artifacts due to freeze fracture can
arise if tissue is not properly mounted and/or is frozen
improperly (282). To mitigate some of these issues,
researchers are encouraged to preserve tissue after
excision as quickly as possible (e.g., snap-freeze in liquid

FIGURE 2. An overview of landmark studies. A timeline of landmark studies investigating skeletal muscle adaptations to mechanical overload in
rodents and subsequent resistance training studies in humans. fCSA, myofiber cross-sectional area; MPB, muscle protein breakdown; MPS, muscle pro-
tein synthesis; mTOR, mammalian/mechanistic target of rapamycin; p70S6K, 70-kDa S6 protein kinase; TEM, transmission electron microscopy.
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nitrogen within a minute after extraction). Additionally,
tissue can be preserved in specialized reagents to pre-
serve RNA integrity (283). Finally, there are published
protocols detailing the process of proper muscle tissue
preservation for histology (282, 284). A brief illustrative
summary of proper muscle tissue processing is provided
in FIGURE 3.
Second, much of the protein, RNA, DNA, and tracer

work in the field provides information on muscle tissue
lysates. There is an appreciable presence of stromal
cells in the extracellular matrix, as mentioned above
(see FIGURE 1). Although it is commonly assumed that
information acquired from whole muscle lysates repre-
sents phenomena occurring within myofibers, a certain
level of non-myofiber-specific signaling exists and must
be considered. Researchers are beginning to circumvent

this issue by labeling, isolating, and analyzing myonu-
clei with specialized genetic mouse models (254, 285,
286). The utilization of immunohistochemical techni-
ques is also becoming more common to decipher pro-
tein localization responses to mechanical overload
paradigms. Notwithstanding, DNA, RNA, and protein
data from crude muscle lysates is still largely prevalent
in much of the research discussed in this review. Also
notable, buffer formulation is critical when working
with muscle tissue, and lysates yielded from nonopti-
mal buffers can contribute to the signal-to-noise issue
discussed in this paragraph. Specialized buffers and
centrifugation protocols can be used to isolate myofi-
brils, nonmyofibrillar proteins, mitochondria, nuclear
proteins, and extracellular matrix proteins (287–290).
However, researchers commonly allocate general cell

FIGURE 3. General muscle tissue processing steps for histology and molecular analyses. Muscle tissue procurement from human and animal studies
involves either a biopsy (humans) or dissections (rodents; not pictured). It is advised that the removal of visible blood, fat, and connective tissue, tissue
triage, and liquid nitrogen (LN2) tissue preservation occur as rapidly as possible (e.g., between 1 and 3min). Noted in the diagram are different preserva-
tion methods when sampling tissue for histology vs. nucleic acid or protein work. Researchers are advised to consult with published literature based on
the assays desired to be performed to ensure that tissues are placed in adequate buffers (if needed) before cold storage and/or LN2 freezing and deep
freeze storage. Upon tissue removal from deep freeze storage, care should be taken in most circumstances to ensure that the tissue is kept in a frozen
state. As illustrated in the schematic, tissue processing for nucleic acid and protein work involves keeping tissue on dry ice, LN2-cooled stages, and/or
ice throughout several of the processing steps to prevent macromolecule degradation. Tissue processing for immunohistochemistry or histology on
nonfixed tissue typically involves sectioning in a cryostat at approximately �20�C. Again, researchers are encouraged to consult with published litera-
ture to obtain the desired conditions based on the assay(s) desired to be performed. This schematic was constructed with BioRender.com, with
permission.
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lysis buffers when analyzing muscle tissue without
considering optimal buffer alternatives relative to the
research question. Some researchers also use pre-
cleared lysates (i.e., removal of insoluble proteins)
whereas others use whole muscle lysates, and this
methodological difference likely leads to different out-
comes being reported. Hence, researchers should
attempt to best determine buffer selection according to
the research question. Furthermore, although whole
muscle lysates are more difficult to work with given the
poor solubility of large contractile proteins, working
with muscle-specific lysis buffers that solubilize most
proteins is ideal in studies that seek to examine how
loading paradigms affect certain aspects of the muscle-
molecular milieu (e.g., enzyme activities or protein-pro-
tein interactions). Finally, whole tissue analysis does
not reflect motor unit recruitment changes, which is
one of the earliest physiological adaptations to resist-
ance training (291). Whole tissue analysis collectively
assays recruited and nonrecruited myofibers together,
which has the potential to dilute signals in myofibers
that are recruited during training. Single-myofiber anal-
yses provide a more nuanced view of the myofiber
size/function and signaling dynamics, albeit there can
still be contamination of adherent stromal cells (254).
Although single-fiber analysis is cumbersome, this anal-
ysis has been performed by several independent labo-
ratories (265, 292–295), and recent work from Murgia
et al. (100) indicates that single-fiber preparations from
humans are suitable for proteomic analysis.
Third, molecular data interpretation can be challeng-

ing in the context of skeletal muscle hypertrophy. Some
assays (e.g., qPCR and Western blotting) normalize mo-
lecular targets to housekeeping genes or proteins (296,
297), both of which can be altered during or after periods
of mechanical overload (298, 299). Western blotting nor-
malization for protein expression can be achieved through
Ponceau or stain-free signals, which represents the total
solubilized protein pool (296, 300). Phosphorylated pro-
teins are commonly normalized to pan (or total) protein
levels for a given target. Omics-based assays have speci-
alized normalization procedures as well. Chip-based RNA
and DNA assays are normalized to a global fluorescent in-
tensity (301), mass spectrometry-based proteomic data
are normalized as a percentage of total spectra (261), and
RNA-seq data are commonly normalized to read counts
(302). Finally, there are commonly interrogated variables
such as total muscle RNA (a surrogate of ribosome con-
tent) and muscle citrate synthase (CS) activity (a surrogate
of mitochondrial volume density). These variables can be
normalized to wet or dry muscle weights, albeit CS activity
can also be normalized to muscle or mitochondrial protein
content. It is critical to appreciate that muscle tissue and
myofiber hypertrophy is accompanied by an absolute

increase in muscle protein and macromolecule content as
discussed above. Thus, in models that induce skeletal
muscle hypertrophy, researchers should ensure that their
normalization variable (e.g., normalizer protein or house-
keeping gene mRNA) is not altered. Slight nonsignificant
changes in opposing directions from the target and nor-
malization marker could show significant differences in
the target-normalized outcome. Likewise, it is important to
conceptualize that modest changes, no changes, or even
a decrease in the relative abundance or concentration of
a target molecule during tissue hypertrophy can indicate
an increase in the overall abundance (and thus an upregu-
lation) of the molecule (184). As a contextual example,
Roberts et al. (80) reported that rat plantaris total RNA con-
centrations (lg/g wet tissue) are 19% higher in hindlimbs
subjected to 14 days of synergist ablation compared
with sham-treated legs. When considering that planta-
ris masses are also 25% higher in the surgical versus
sham-treated legs, plantaris total RNA content in the
surgical versus sham-treated legs is estimated to be
47% higher by multiplying RNA concentration in micro-
grams per gram of wet tissue by wet tissue weights.
The Booth laboratory (184, 185) adopted a similar
approach when reporting rRNA and mRNA content dif-
ferences between nonexercised rats and rats that per-
formed hindlimb resistance-like training; specifically,
targets were presented in relative (% of total extracted
RNA) and absolute (RNA content adjusted for muscle
mass) terms. Hence, although not commonly adopted,
it is recommended that researchers reporting protein
or RNA expression changes during chronic periods of
mechanical overload discuss (or even report) how the
degree of hypertrophy potentially alters the relative
versus total content of assayed biomarkers. Finally,
non-steady-state differential equation models have
been championed when using D2O during atrophy
models to calculate integrated protein synthetic rates
since calculations are contingent on muscle protein
pool size (303), and the same could be argued for
muscle hypertrophy models that elicit increases in the
total muscle protein pool.
Fourth, the timing of tissue sampling after a bout or

period of mechanical overload can be critical relative to
the research question. For example, the temporal pat-
tern of changes in protein synthesis following exercise
does not directly track with intracellular signaling
responses (17, 26, 304–306), and this is likely related to
the timing of tissue sampling that will require innovative
approaches to address. The RNA profile of muscle can
vastly differ when sampled minutes, hours, or days after
a resistance exercise bout (307, 308). Incongruent find-
ings between muscle protein turnover rates and hyper-
trophy during the earlier periods of resistance training
have also been noted (304, 309, 310), albeit this
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relationship is more coupled as subjects become trained
(311). These findings indicate that exercise-induced pro-
tein synthesis rates may be more of a hypertrophic stim-
ulus as these signals become more “refined” with
training. Unfortunately, several studies that have exam-
ined the muscle protein synthesis response to naive
bouts of resistance exercise likely interrogated a dam-
age-synthesis response versus the hypertrophy-synthe-
sis response that occurs later into training (310). Hence,
the timing of tissue sampling is critically important to
consider depending on the research question (e.g.,
examining peak mRNA responses to mechanical over-
load vs. phosphosignaling responses, etc.).
Fifth, it is often underappreciated that the size and

percentage of slow- and fast-twitch myofibers differ
depending on depth and proximo-distal location in a
muscle group in humans and rodents (312, 313). This
issue is difficult to mitigate in humans given the invasive-
ness of obtaining multiple biopsies. In rodents, however,
a common practice is to examine most (if not all) myofib-
ers at the midbelly of excised muscle. Also notable, data
frommultiple methods used to assess whole muscle ver-
sus myofiber size changes to mechanical overload in
rodents and humans yield weak-to-moderate correla-
tions. This observation was first noted by Gordon (314) in
animals in the 1960s when comparing changes in mean
fCSA and muscle weights following a period of treadmill
training. Similar findings have since been reported in
human resistance training studies that have compared
MRI-derived VL muscle volume changes to ultrasound-
derived VL muscle thickness changes (315), MRI-derived
midthigh muscle CSA changes to dual-energy X-ray
absorptiometry (DXA)-derived leg lean mass changes
(316), and MRI- and ultrasound-based tissue level changes
to mean fCSA changes (317). Why these discrepancies
exist is not discussed here, and interested readers are
encouraged to refer to Haun et al. (83) for more details.
However, readers should be aware that this is still a salient
issue that has not been resolved.
Finally, there are strengths and weaknesses with

rodent models. Other than the clear discrepancies in
myofiber size (81) and oxidative phenotype (93), meta-
bolic and protein turnover rates are appreciably different
between humans and rodents (318). Muscle protein syn-
thesis rates have been reported to be 1.3- to 2-fold
greater in type I versus type II fibers in rodents (319), and
similar evidence exists (295). Conversely, type I versus II
fiber differences in muscle protein synthesis rates are
less dramatic in the resting and postexercise states in
humans (�10–30%) (295, 320). Mechanical overload
models in rodents vary in duration and stimulus, and the
advantages and disadvantages of these models have
been more thoroughly described by Lowe and Alway
(321) and Booth and Thomason (322) and more recently

by Murach et al. (232). Although studies using this pro-
cedure have yielded insightful information, it is a surgi-
cal model in which the intact muscle(s) is exposed to
persistent load and exhibits rapid hypertrophy. Hence,
despite the discussion of several studies using the syn-
ergist ablation model, the unfamiliar reader should be
aware that this model does not resemble the physio-
logical stimulus provided through progressive resist-
ance training. Finally, it is common for researchers to
examine rodents between the ages of 2 and 4 mo, and
this can yield incongruent results between studies
because this time frame is a formative stage of muscle
maturation in the animal (323). There are, however,
several strengths with rodent models. For instance,
although it has been reported that human and mouse
genomes on the whole show �40% sequence overlap
(324), there are similarities between genomes such as
genome size (human [GRCh30]: 3,088,269,832; mouse
[GRCm38]: 2,725,521,370) and the number of protein-
coding genes (human: 19,950; mouse: 22,018), and
both species possess �70% sequence similarities in
protein coding gene sequences (325, 326). Genetic
mouse models have also been developed to determine
loss or gain of function in relation to signaling mecha-
nisms involved with skeletal muscle hypertrophy, and
this approach is not possible in humans. Commonly
interrogated hindlimb rodent muscles such as the sol-
eus and plantaris predominantly consist of type I or type
II fibers (80), whereas human muscles that are commonly
biopsied contain a mixture of fibers as discussed in sect.
2. Hence, unless single-fiber approaches are used in
humans, examining fiber type-specific mechanisms asso-
ciated with hypertrophy may be more fruitful in rats given
that dual overload via synergist ablation differentially
affects muscle protein synthesis, ribosome biogenesis,
proteasome activity levels, satellite cell counts, and the
magnitude of hypertrophy in the type I fiber-prominent
soleus versus type II fiber-prominent plantaris muscle
(80). The use of adeno-associated virus (AAV) vectors is
becoming more widespread in rodents given the high
uptake efficiency across most myofibers within a muscle
(275). Genes delivered through AAV-based vectors can
also be coupled with a muscle-specific promoter to trans-
duce muscle-specific gene expression across virtually all
muscles in the animal. Gene delivery is also possible
through the electroporation of plasmids containing genes
encoding proteins or shRNAs for gene knockdown (327),
and this methodology also has good utility in examining
mechanisms. The ability to control environmental factors
more stringently in rodents, such as food administration
and the light-dark (sleep) cycle, is also advantageous in
reducing variability in outcome measures. Finally, a prom-
inent theme in this review is that several mechanistic
rodent studies predated (and were confirmed) by human
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discoveries (see FIGURE 3). Thus, although limitations
exist, the discussed strengths and general human trans-
latability of rodent models in skeletal muscle hypertrophy
research illustrate their utility in examining associated
mechanisms. FIGURE 4 provides a summary of advan-
tages, limitations, and shared strengths of rodent and
human studies in the literature.

4.1. Mechanisms Commonly Associated with
Skeletal Muscle Hypertrophy

4.1.1. The involvement of mTORC1 and its
upstream activators.

mTOR is a 289-kDa serine/threonine protein kinase in
the phosphatidylinositol 3-kinase (PI3K)-related protein
kinase (PI3K) family (328). In mammals, mTOR acts as a
catalytic subunit of two distinct complexes known as
mTOR complex 1 (previously defined as mTORC1) and
complex 2 (mTORC2). These complexes differ in their
accessory proteins, differential sensitivity to rapamy-
cin, downstream substrates, and functions. Specific to
this review, mTORC1 phosphorylates substrates that
increase the synthesis of proteins, lipids, nucleotides,
and ATP while limiting the autophagic breakdown of
cellular components (329). Two and a half decades
since the discovery of rapamycin (330, 331) and mTOR
(332), mTORC1 has been the most investigated mech-
anism linked to skeletal muscle hypertrophy. mTORC1
contains six accessory proteins including (333) 1)
mTOR, which possesses kinase activity, 2) mammalian
lethal with sec-13 (mLST8), 3) DEP-domain containing
mTOR-interacting protein (DEPTOR), 4) the Tti1/Tel2 com-
plex, 5) regulatory-associated protein of mammalian

target of rapamycin (RAPTOR), and 6) proline-rich Akt
substrate 40kDa (PRAS40). Providing a more expanded
discussion of mTORC1 signaling is beyond the scope of
this review, and these details are provided elsewhere (10,
13, 334). However, the reader should appreciate that
active mTORC1 complexes enhance muscle protein syn-
thesis by regulating the phosphorylation of downstream
substrates involved in translation initiation (e.g., p70S6K
and 4EBP1) and elongation (e.g., eEF2) (192, 335).
Although various cellular conditions are needed to stimu-
late increases in mTORC1 activity, one that has gained
recent notoriety is the interaction of the mTORC1 complex
with the lysosome (221, 311, 336–338). Increased translo-
cation of mTORC1 to the periphery of myofibers following
mechanical overload has also been reported, and future
investigations will likely unveil the relevance of this event
(218, 221, 339).
As mentioned in sect. 3, Baar and Esser (187) and

Bodine et al. (191) published landmark studies outlining
the involvement of p70S6K and mTOR, respectively, in
mechanical overload-induced skeletal muscle hypertro-
phy, and these findings were subsequently validated in
other rodent studies (340, 341). Goodman et al. (342)
also reported that mTOR within myofibers is the rapamy-
cin-sensitive element that confers the hypertrophic
response to mechanical overload in mice, and follow-up
mouse studies provided compelling evidence to sug-
gest that mTORC1 is critical in this process (343, 344).
This animal work led to other rodent and human investi-
gations reporting enhanced mTORC1 signaling hours to
days after a bout (or bouts) of mechanical overload (189,
206, 218, 221, 225, 345–371). Although a large body of
research provides strong evidence suggesting that
mTORC1 signaling is involved with skeletal muscle hy-
pertrophy, the upstream activators of mTORC1 that are

FIGURE 4. Advantages, limitations,
and shared strengths of rodent and
human studies. This figure (created
with BioRender.com, with permission)
summarizes the advantages and limita-
tions of using rodent models. Additionally,
limitations of human studies are pre-
sented. Finally, shared strengths of both
models are displayed in the overlap
region of the Venn diagram. AAV, adeno-
associated virus; EU, 5-ethynyluridine;
IHC, immunohistochemistry.
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responsive to mechanical loading have not been fully
elucidated. Over the years, various signals have been
posited to be responsible for mTORC1 activation dur-
ing overload stimuli including growth factor signaling
(namely insulin-like growth factor 1, or IGF1), mem-
brane-associated proteins involved with mechano-
transduction, proteins involved with amino acid sensing
that converge to activate mTORC1, and other proteins
that act as upstream activators and inhibitors of mTOR.
These topics are the crux of discussion in this section of
the review.
AKT is a protein kinase that acts as an upstream activa-

tor of mTORC1 (372). IGF1, and its muscle-specific
mechano-growth factor (MGF) variant, are upregulated at
the mRNA and protein levels in rodent and human skele-
tal muscle subjected to mechanical overload (197, 373–
382). These observations largely inspired a hypothesis
that was pervasive in the literature from the late 1990s
through �2010 suggesting that postloading increases
in localized IGF1 isoforms are largely responsible for
mTORC1 activation via ligand binding to the IGF1 recep-
tor, IGF1 receptor autophosphorylation, and increased
AKT kinase activity (383–387). However, the IGF1 hypoth-
esis has been rigorously challenged. Hornberger et al.
(388) reported that the stretch-induced activation of
mTOR signaling ex vivo is not abrogated in Akt1-knockout
mice. Spangenburg et al. (389) reported that synergist
ablation-induced mTORC1 signaling and plantaris hyper-
trophy are not perturbed in dominant-negative IGF1 re-
ceptor (Igf1r) mice. Maruyama et al. (390) used an AKT
inhibitor (MK2206) in rodents to show that mTORC1 acti-
vation via hindlimb electrical stimulation occurs independ-
ently of AKT1/2 phosphorylation. Miyazaki et al. (391)
reported that synergist ablation can still lead to the activa-
tion of mTORC1 in mice treated with a PI3K/AKT inhibitor.
However, recent reports indicate that Akt1/2 double-
knockout mice present stark impairments in muscle mass
and protein synthesis during the rapid growth phase (8–
12 wk old) (392), and this extends into adulthood (393).
Hence, AKT may be indispensable for muscle maturation
and growth, although it does not appear to have a central
role in mTORC1 activation in response to mechanical
overload.
The conflicting IGF1 and AKT findings presented above

have, in part, shifted emphasis to the current-day mecha-
notransduction hypothesis of mechanical overload-
induced skeletal muscle hypertrophy. This hypothesis
was pioneered by Goldberg et al. (127) (1975), expanded
by Vandenburgh (394) (1987), and further refined by
Fl€uck and colleagues (395–397) as well as Hornberger
and colleagues (398, 399). Mechanotransduction in
myofibers occurs when mechanical perturbations of
the basal lamina, sarcolemma, and cytoskeleton cata-
lyze downstream signaling events. It is thought that

these biochemical signaling events, in turn, activate
mTORC1 and upregulate protein synthesis in an AKT-
independent manner. Hornberger and colleagues
(400, 401) established that various forms of mechani-
cal overload transiently increase myocellular concen-
trations of phosphatidic acid (PA) and mTORC1
signaling by stimulating the membrane-associated ac-
tivity of diacylglycerol (DAG) kinases. This group has
also reported that PA can directly bind to and activate
mTOR (402, 403). Collectively, these studies estab-
lished a working model in which muscle contractions
upregulate mTORC1 activity by promoting an increase
in membrane-associated DAG kinase activity and sub-
sequent increases in intracellular PA. This model is
further strengthened by research from Hornberger’s
laboratory (404) showing that the knockout of the zeta
DAG kinase isoform (DGKf) significantly attenuates
increases in fCSA, protein accretion, and plantaris
mass after 7 days of synergist ablation. In humans,
Thalacker-Mercer et al. (238) reported that human par-
ticipants who exhibited the greatest muscle hypertro-
phy after a resistance training program (i.e., termed
“extreme responders”) exhibited heightened DGKf
mRNA expression before training. Although this latter
human report does not provide a cause-and-effect
relationship, it further supports the involvement of
DGKf as an anabolic signal during resistance training.
However, the upstream mechanisms through which
mechanical stimuli increase DGKf activity have yet to
be defined, and this mechanism will likely continue to
be investigated.
Another mode of skeletal muscle mechanotransduc-

tion potentially involves transmembrane integrins and
accessory proteins localized to the internal portion of
the sarcolemma that propagate signals to activate
mTORC1 (14). This model has been largely inspired by
the findings of the Booth laboratory (405) reporting that
focal adhesion complex-associated proteins, specifically
focal adhesion kinase (FAK), are upregulated in rat sol-
eus muscle 1 day and 8 days after synergist ablation. In
this same publication, these authors reported increased
FAK autophosphorylation in rooster muscle subjected
to chronic loaded stretch. The Fl€uck laboratory (395)
later reported that FAK autophosphorylation preceded
increases in p70S6K activity during an unloading and
reloading paradigm in mice whose hindlimb muscles are
transfected with a pCMV-FAK plasmid. Crossland et al.
(406) reported in vitro data in this area showing that
shRNA-mediated FAK knockdown reduced IGF1-stimu-
lated increases in myotube protein synthesis and hyper-
trophy. Chaillou et al. (407) reported that mRNAs related
to the integrin-linked kinase pathway are upregulated
during the earlier phases of synergist ablation in mice,
and these authors speculated that transmembrane
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integrins may signal an upregulation in other genes that
coordinate the anabolic response.
The notion of mechanotransduction operating through

integrins or FAK signaling is scientifically grounded given
the evidence discussed above. As well, FAK is localized
with integrins on the interior portion of the sarcolemma
(408), and FAK autophosphorylation associates with
mTORC1 signaling in myotubes and other cell types (395,
409–411). However, several studies have challenged
whether mechanotransduction operates through integ-
rins or FAK to promote downstream anabolic signaling
and skeletal muscle hypertrophy. Relative to wild-type
mice, mice overexpressing the a7BX2-integrin subunit in
skeletal muscle (a7Tg mice) exhibit reduced mTORC1 sig-
naling after one bout of downhill running (412) despite
these same mice exhibiting rapid myofiber hypertrophy
after multiple bouts of the same stimulus (413). Boppart
and Mahmassani (14) have also discussed unpublished
findings from their laboratory showing that mTORC1
signaling trended downward in a7Tg mice compared
with wild-type mice after 1 day of synergist ablation.
Interestingly, Petrosino et al. (414) more recently reported
that synergist ablation-induced plantaris hypertrophy is
impaired in Ccn2-knockout mice and noted that the
CCN2 gene (also known as connective tissue growth fac-
tor) encodes a matricellular protein that exists in the
extracellular matrix. Synergist ablation-induced elevations
in muscle protein synthesis are also reduced in Ccn2-
knockout mice, which presented lower basal levels of
pan and phosphorylated FAK concentrations in skeletal
muscle. The authors hypothesized that CCN2 might stim-
ulate mechanical overload-induced muscle protein syn-
thesis and hypertrophy through FAK signaling. However,
contrary to the authors’ own hypotheses, mechanical
overload-induced increases in pan and phosphorylated
FAK are not impaired in Ccn2-knockout mice 3 and 7
days after synergist ablation despite muscle protein syn-
thesis and hypertrophy being dampened. In humans,
Glover et al. (415) reported that muscle FAK phosphoryla-
tion is not transiently altered after a bout of resistance
exercise despite an upregulation in p70S6K phosphoryla-
tion being observed, and similar evidence exists in rats
subjected to a bout of eccentric contractions (416).
Franchi et al. (417) demonstrated that FAK phosphoryla-
tion is upregulated with 8 wk of eccentric-only versus
concentric-only resistance training in humans. However,
both forms of training elicit similar increases in thigh lean
mass values, midthigh thickness values, and 8 wk inte-
grated muscle protein synthesis responses. It is also nota-
ble that FAK phosphorylation is prevented with mTORC1
inhibition in vitro, which suggests that FAK could be a
downstream target of mTORC1 signaling rather than
an upstream activator (410). Finally, sarcomere-based
mechanotransduction has been shown to contribute

to skeletal muscle hypertrophy independently of FAK
involvement. Specifically, van der Pijl et al. (418) used a
unilateral diaphragm denervation hypertrophy model in
genetic mouse models in which titin stiffness is increased
(TtnDIAjxn) and decreased (RBM20DRRM), respectively, and
reported that RBM20DRRM mice (decreased titin stiff-
ness) presented significant impairments in hypertro-
phy whereas TtnDIAjxn mice presented exaggerated
increases in hypertrophy. Collectively, these conflicting
reports make it difficult to determine whether integrin or
FAK signaling is involved with load-induced increases in
skeletal muscle hypertrophy.
A final mechanotransduction candidate discussed here

is stretch-activated channels (SACs), which permit the
influx of calcium and sodium ions into myofibers (16).
There are various lines of evidence to support that
contraction-induced increases in intracellular calcium
increase mTORC1 signaling and muscle protein synthesis.
For instance, the pharmacological blockade of SACs in
rats with streptomycin has been shown to blunt eccentric
contraction-induced increases in p70S6K phosphoryla-
tion (419). Others have reported that mTORC1 signaling
and muscle protein synthesis are attenuated in rats
administered a SAC inhibitor after eccentric contractions
(420). However, there are also several independent lines
of conflicting evidence in this area. The landmark paper
by Bodine et al. (191) also reported that the calcium-medi-
ated calcineurin pathway is not affected during periods of
mechanical overload and calcineurin inhibition does not
impair mechanical overload-induced skeletal muscle hy-
pertrophy. It is also difficult to disentangle how calcium
release from organelles in myofibers, rather than the
influx of calcium into myofibers via SACs, affects mTORC1
signaling. For instance, Li et al. (421) performed in vitro
experiments to show that the inhibition of calcium release
from lysosomes reduces mTORC1 activity. Calcium transi-
ents from the sarcoplasmic reticulum during muscle con-
tractions also presumably have a role in intracellular
calcium signaling (422), and this mechanism operates in-
dependently of SAC-mediated calcium influx. Ito et al.
(423) reported that synergist ablation-induced hypertro-
phy is abrogated in Nnos1-null mice. These researchers
attributed this effect to a mechanism involving neuronal
nitric oxide synthase (nNOS)-mediated nitric oxide forma-
tion, the subsequent formation of peroxynitrite, sarcoplas-
mic reticulum Trpv1 channel activation via increased
peroxynitrite concentrations, and the increased influx of
calcium into sarcoplasm from the sarcoplasmic reticulum
to enhance mTORC1 signaling. Subsequent work by this
group strengthened this mechanism (424), and a more
recent paper suggests that the stimulation of the P2Y2

receptors promotes increased intracellular calcium con-
centrations to enhance mTORC1 signaling in the type I
myofiber-rich soleus muscle (425). Again, although these
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data support the role of calcium in propagating anabolic
signaling, these calcium-mediated mechanisms do not
involve SAC-mediated mechanotransduction. Finally, the
manner in which calcium activates mTOR has not been
well resolved, and the involvement of calcium-mediated
signaling in skeletal muscle hypertrophy has been chal-
lenged. A 1999 study supported a mechanism in which
calcium-mediated calcineurin activation promotes me-
chanical overload-induced skeletal muscle hypertrophy
in rodents (426). A separate study published the same
year suggested that calcineurin acted downstream of
IGF1 to elicit the nuclear translocation of the NF-ATc1 tran-
scription factor and drive transcriptional processes that
resulted in myofiber hypertrophy (427). However, subse-
quent research rigorously challenged the notion that cal-
cineurin activation is involved in IGF1-mediated and/or
mechanical overload-induced skeletal muscle hypertro-
phy (428–430). More recently, Ferey et al. (431) demon-
strated that the overexpression of calcium/calmodulin-
dependent protein kinase kinase-a (CaMKKa/CAMKK1),
which is a prominent signaling mediator for intracellular
calcium, stimulatedmTORC1 signaling andmuscle protein
synthesis in mice. As with much of the data presented
above, this finding supports the notion that calcium sig-
naling (via CaMKKa activation) may act as an upstream
activator of mTORC1. What strikingly opposes this para-
digm, however, is data in this same paper showing that
Camkk1-knockout mice exhibited 15% greater muscle hy-
pertrophy and enhanced mTORC1 signaling relative to
wild-type mice after synergist ablation. Prior work by
Hornberger et al. (402) has also shown that the chelation
of intracellular calcium with BAPTA-AM has no effect on
the stretch-induced activation of mTORC1. Thus, although
various lines of evidence have linked increases in intra-
cellular calcium concentrations to enhanced mTORC1 sig-
naling, the role that SACs (and calcium signaling at large)
exhibit during load-induced increases in mTORC1 activity
is riddled with conflicting data and needs further clarity.
Aside from the discussed mechanotransduction mech-

anisms, various upstream activators of mTORC1 signaling
may be affected during periods of mechanical overload
including amino acid-sensing and amino acid transport
proteins. It is generally recognized that dietary proteins
and essential amino acids increase mTORC1 signaling
and muscle protein synthesis in the basal state (432). It is
also recognized that dietary proteins and essential amino
acids additively enhance anabolic signaling in skeletal
muscle after a resistance exercise bout (433–435).
However, preliminary data suggest that skeletal muscle
upregulates the activity and content of proteins involved
in the transport and sensing of amino acids in a load-de-
pendent and nutrient-independent manner. For instance,
electrically simulated hindlimb contractions have been
shown to increase the activity of mammalian Vps34

(mVps34), an amino acid-sensing protein, 3 h after con-
tractions (436). Others have reported in humans that
chronic resistance training increases the expression and
sarcolemmal enrichment of the L-type amino acid trans-
porter 1 (LAT1) protein (219), which is responsible for trans-
porting several essential amino acids into myofibers
(437). Although this area is limited, the available data sup-
port that load-dependent increases in proteins that pro-
mote amino acid transport and sensing may be partially
responsible for enhanced mTORC1 activation and skele-
tal muscle hypertrophy during periods of mechanical
overload.
Other upstream activators and inhibitors of mTORC1

signaling are also altered during periods of mechanical
overload. TSC2 inhibits mTORC1 by acting as a GTPase-
activating protein that converts active GTP-Rheb into
inactive GDP-Rheb (438), and TSC2, Rheb, and mTOR
are enriched at the lysosome (438). Jacobs et al. (337)
demonstrated that eccentric contractions in mice
reduced the localization of TSC2 with the lysosome,
coinciding with a hyperphosphorylation of TSC2. A sub-
sequent investigation by these same researchers indi-
cated that the inducible and skeletal muscle-specific
knockout of Rheb led to a reduction in the eccentric con-
traction-induced activation of mTORC1 signaling (439).
These studies lend support for a model in which the
load-induced phosphorylation of TSC2 causes it to dis-
sociate from the lysosome and these events enable
Rheb to obtain its active GTP-bound state to upregulate
mTORC1 signaling. In humans, Song et al. (221) reported
that a bout of resistance exercise transiently leads to
similar postloading events (e.g., dissociation of TSC2
from Rheb), lending further credibility to this model. The
Regulated in DNA damage and development 1 (REDD1)
protein, which is an inhibitor of mTORC1 signaling (440),
may also be affected during periods of mechanical over-
load. Gordon et al. (352) reported that skeletal muscle
REDD1 protein levels are transiently reduced after an
overload stimulus in mice. These authors published a
follow-up study showing that load-induced hypertrophy
is enhanced in Redd1-knockout mice (350), coinciding
with heightened mTORC1 activity and a reduction in
autophagy. Drummond et al. (441) partially confirmed
these findings in humans by showing that REDD1 mRNA
is transiently downregulated 3 h after a low-intensity re-
sistance exercise bout with blood flow restriction.
However, skeletal muscle REDD1 mRNA and protein
levels have been reported to be elevated 1 and 3 h
after a bout of resistance exercise (203). Others have
also shown that resistance exercise does not transi-
ently affect REDD1 protein levels (442). Thus, addi-
tional research into REDD1 and its role during
mechanical overload-induced skeletal muscle hyper-
trophy is warranted.

ROBERTS ET AL.

2694 Physiol Rev �VOL 103 � OCTOBER 2023 � www.prv.org

Downloaded from journals.physiology.org/journal/physrev (063.135.161.169) on April 1, 2024.

http://www.prv.org


Finally, the increased myocellular concentrations of
certain substrates linked to enhanced mTORC1 signaling
may also be involved with skeletal muscle hypertrophy.
For instance, polyamine synthesis enzymes are upregu-
lated in skeletal muscle by synergist ablation in an
mTORC1-dependent fashion (443). Polyamines are small
compounds containing two or more amino groups (e.g.,
spermidine, spermine), and various polyamines are
required for cellular homeostasis and protein synthesis
(444). However, these data are relatively new to the
field, and the function(s) that polyamines exhibit during
skeletal muscle hypertrophy remains to be determined.
In summary, the collective evidence suggests that

enhanced mTORC1 signaling promotes skeletal muscle
hypertrophy during various loading paradigms in ani-
mals and humans. However, it is critical to note that this
signaling likely needs to be pulsatile given that mTOR
hyperactivity in TSC1-knockout mice increases oxidative
stress, elicits myofiber damage, and causes myofiber
loss over the life span (445). It is also apparent that
increased mTORC1 activity during these scenarios does
not require certain upstream signals such as an upregu-
lation in IGF1 signaling, enhanced AKT activity, or calci-
neurin activation. Instead, several lines of evidence
support that a DAG kinase-mediated increase in PA
and a dissociation of TSC2 from the mTOR-lysosome
complex are involved with load-induced increases
in mTORC1 activity. The other upstream mTORC1 sig-
nals discussed (e.g., integrins and FAK signaling, an

upregulation in amino acid transport and sensing pro-
teins, a downregulation in REDD1) have limited sup-
porting evidence or are confounded by inconsistent
data and require further clarity. FIGURE 5 summarizes
several of the mTORC1-associated mechanisms dis-
cussed in this section.

4.1.2. A brief discussion of mTORC1-independent
mechanisms.

Although a high level of emphasis has been placed on
mTORC1 signaling, several lines of evidence support
mTORC1-independent signaling being involved with
load-induced anabolic outcomes or skeletal muscle
hypertrophy (36). For instance, West et al. (446) dem-
onstrated that mTOR inhibition through rapamycin
inhibited 6 h postexercise muscle protein synthesis af-
ter sciatic stimulation of the hindlimb muscles in rats.
However, rapamycin only partially inhibited protein
synthesis 18 h after exercise, and this was attributed
to the mTORC1-independent phosphorylation of ERK1/
2 (a mitogen-activated protein kinase, or MAPK), eEF2
(which regulates translation elongation), and UBF (a
transcriptional regulator of ribosome biogenesis) as
well as alterations in the mRNA expression patterns of
Akirin1/Mighty, Myc, and other genes involved in ribo-
some biogenesis. Ogasawara and Suginohara (447) simi-
larly demonstrated that early hypertrophic signaling (<3 h
after exercise) following an electrical stimulation bout in

FIGURE 5. Signals associated with me-
chanical overload posited to upregulate
mammalian/mechanistic target of rapa-
mycin complex 1 (mTORC1) activity in
skeletal muscle. This schematic (con-
structed with BioRender.com, with per-
mission) provides an overview of content
discussed in the review related to signals
associated with mechanical overload that
have been posited to upregulate mTORC1
activity in skeletal muscle. Notably, 1 of
these signals [insulin-like growth factor 1
(IGF1)] operates through canonical ligand-
receptor binding, whereas the other 3
signals are thought to operate through
mechanotransduction. Single or multiple
solid arrows indicate the pathway (or a por-
tion of the pathway) has been relatively
well defined and/or extensively investi-
gated. Dashed arrows indicate that not
much is known about how the upstream
signal operates in skeletal muscle during
periods of mechanical overload. DAG, di-
acylglycerol; FAK, focal adhesion kinase;
PA, phosphatidic acid.
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rats is sensitive to rapamycin, whereas later increases in
protein synthesis (>6 h after contraction) occurred de-
spite mTOR inhibition. You et al. (343) demonstrated that
load-induced increases in protein synthesis are not
impaired by the muscle-specific, inducible knockout of
Raptor or when mice are treated with rapamycin (342).
Since contraction-induced muscle protein synthesis was
subsequently shown to be completely inhibited by an
ATP-competitive mTOR inhibitor (447), it is reasonable to
speculate that mTORC2 may act in tandem with mTORC1
to regulate muscle protein synthesis. However, mTORC2
inhibition via muscle-specific Rictor knockout in mice
does not affect contraction-induced muscle protein syn-
thesis (448). Goodman et al. (449) reported that synergist
ablation increases muscle Yes-Associated Protein (YAP)
protein concentrations, a transcriptional coactivator of the
TEA domain transcription factors and constituent of the
Hippo signaling pathway (450, 451). An increase in YAP
phosphorylation also occurs, and skeletal muscle YAP
overexpression in vivo induces hypertrophy in an
mTORC1-independent fashion. Through a series of in vivo
transfection experiments, it was shown that increased
YAP protein expression enhances the promoter activities
ofMyc andMyod1 while reducing the promoter activity of
Trim63/Murf1. Hence, the YAP-induced increase in Myc
expression could drive hypertrophy through enhanced
ribosome biogenesis in a mTOR-independent fashion.
Contrary to these findings, however, is work by the
Wackerhage laboratory (452) showing that the constitu-
tive overexpression of Yap1 in mice leads to muscle atro-
phy. Given the novelty of this target, as well as conflicting
data, the involvement of YAP in skeletal muscle hypertro-
phy needs to be further explored. Steinert and colleagues
(267) more recently demonstrated that S473 phospho-
rylation of the Tripartite Motif-Containing 28 (TRIM28)
protein is transiently elevated after a bout of maximal
hindlimb contractions in mice and this occurs inde-
pendent of mTORC1 signaling. In addition, TRIM28
phosphorylation confers myofiber hypertrophy in mice
transfected with a TRIM28 phosphomimetic plasmid con-
struct. The authors posited that TRIM28 phosphorylation
likely occurs through upstream MAPK signaling and,
once phosphorylated, the protein could enhance the
expression of the muscle specific MYOD and MEF2 tran-
scription factors to promote hypertrophy.
As alluded to in the prior paragraph, MAPK signaling

has been commonly cited as an mTORC1-independent
signaling mechanism involved with skeletal muscle hy-
pertrophy. Three MAPKs (ERK1/2, JNK1/2, and p38) have
been extensively examined with in vitro and in rodent
synergist ablation models (354, 453–455). More recent
data suggest that activation of MAPKs occurs through
mechanotransduction (e.g., the MAP3K ZAKb localizing
to Z disks) (456), and there is evidence that certain

aspects of MAPK signaling converge to activate down-
stream mTORC1 targets in skeletal muscle (351). Several
groups have reported that elevated MAPK signaling
occurs after one or multiple resistance exercise bouts in
humans (363, 457–462), and in some cases these signal-
ing events coincide with elevated mTORC1 signaling and
increases in muscle protein synthesis. The Goodyear lab-
oratory (463) reported that mechanical overload-induced
increases in fCSA andmuscle mass are impaired in induc-
ible and muscle-specificMapk8/Jnk1-knockout mice after
14 days of synergist ablation, which again underscores
the importance of MAPK signaling in promoting skeletal
muscle hypertrophy. There is evidence from a recent
human study suggesting that b2-adrenergic signaling
operates in an mTORC1-independent fashion to stimulate
myofibrillar protein synthesis following resistance exer-
cise (464). And perhaps the most compelling example of
non-mTORC1 signaling being involved with overload-
induced hypertrophy comes from Ogasawara and col-
leagues (465), who reported that chronic rapamycin treat-
ments dampened, but did not prevent, increases in
hindlimb muscle masses and fCSA in rats following 8 wk
of electrically evoked hindlimb contractions. Although the
mTORC1-independent mechanisms associated with this
response were not determined, this was the first resist-
ance training-like loading paradigm in rodents to show
such an effect. This is very important to note because all
prior evidence of rapamycin preventing skeletal muscle
hypertrophy came from surgical models of chronic me-
chanical overload.
Indeed, several lines of evidence support that mTORC1

inhibition inhibits skeletal muscle hypertrophy during
chronic mechanical overload (191, 340, 341, 343, 466).
Notwithstanding, several studies have also suggested
that non-mTORC1 signals are involved (e.g., MAPKs, YAP,
TRIM28, UBF, MYC, and others), and the importance of
these mechanisms during physiologically relevant forms
of mechanical overload-induced hypertrophy warrants
further consideration.

4.1.3. The involvement of ribosome biogenesis in
mechanical overload-induced skeletal
muscle hypertrophy.

Millward and colleagues (467) published a report in 1973
indicating that muscle protein synthesis in rat skeletal
muscle scaled linearly with changes in ribosomal (r) mus-
cle RNA content. They noted that

“More than 80% of muscle RNA is ribosomal and this
proportion appears to be maintained during protein
depletion, so that a change in RNA also reflects a
change in ribosome content. If alteration in ribosomal
content affects control, then this alteration may be
termed a change in the ribosomal capacity for protein
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synthesis. If, however, a change in synthesis is brought
about by alterations in the other factors modulating
each phase of translation, then it is a change in the ribo-
somal efficiency.”

This study provided the basis for the current-day defini-
tions of translational capacity, the concentration of ribo-
somes in myofibers, and translational efficiency, the
ability of existing ribosomes to catalyze protein synthe-
sis per unit of RNA. Additionally, rRNA accounts for
�80% of the total RNA content of cells (468); this work
implied that the determination of total RNA concentra-
tions reliably reflects alterations in skeletal muscle ribo-
some content. Increases in translational or ribosomal
capacity occur through a process termed ribosome bio-
genesis. Describing the process of ribosome biogenesis
is beyond the scope of this review and has been
detailed elsewhere (20, 469–472). Subsequent rodent
studies have shown that mechanical overload-induced
increases in tissue total RNA and rRNA concentrations
are associated with skeletal muscle hypertrophy, as
reviewed by Goldberg et al. (127). Using an intermit-
tent loading paradigm, Wong and Booth (473) con-
firmed the increase in RNA content after 10 wk of
hindlimb loading. Several studies have since indicated
that loading paradigms increase rRNA or total RNA
concentrations after one bout or with chronic loading
to amplify the ribosomal capacity of the muscle (80,
380, 382, 474–480).
A series of in vitro studies from 1989–2005 suggested

that an increase in translational capacity through rRNA
synthesis is involved in cardiomyocyte and myotube hy-
pertrophy (481–483). In skeletal myotubes specifically,
Nader et al. (481) reported that serum/growth factor stim-
ulation increased rRNA concentrations and that this
effect is abrogated by rapamycin, which implicated that
ribosome biogenesis in myotubes is largely stimulated
through mTORC1 signaling. Although mTORC1 con-
verges at the ribosome to promote increased transla-
tional efficiency, this was the first evidence suggesting
that mTORC1 signaling also promotes ribosome biogen-
esis in skeletal muscle. More recently, these same
researchers reported that mTORC1 can undergo nuclear
localization to bind to rRNA gene promoters, and this pro-
cess can be inhibited by rapamycin (484). Furthermore,
the release of mTOR from ribosomal gene promoters
with rapamycin treatment correlated with chromatin
marks indicative of transcriptional silencing.
To understand the mechanisms responsible for ribo-

some biogenesis in skeletal muscle, von Walden et al.
(478) investigated the transcriptional response of rRNA
genes during the initial stages of mechanical overload.
rRNA transcription peaked at 3 days and preceded
rRNA accumulation and hypertrophy. A transcriptional
burst involved the enrichment of specific transcription

factors at the rDNA promoter including the Upstream
Binding Factor (UBF), c-Myc (Myc), and the Williams
Syndrome Transcription Factor (WSTF), a component of
the B-WHICH chromatin remodeling complex. This was
consistent with the increase in 45S pre-rRNA and sug-
gests both transcriptional and epigenetic regulation of
ribosome biogenesis in skeletal muscle hypertrophy. A
recent study by Murach et al. (485) expanded upon the
role that Myc transcription factor has in driving ribosome
biogenesis. Specifically, in silico analysis of several data-
sets suggested that Myc gene regulation is evident at
the onset of mechanical overload and that certain genes
related to ribosome biogenesis (e.g., Bop1, Polr3g, and
Rps19) are likely driven by Myc.
Studies in humans have shown results consistent with

these data. For example, a bout of resistance exercise
stimulates rRNA gene transcription as early as 4 h after
exercise (486, 487), and this response can persist for at
least 48–72 h after exercise (472, 488). Figueiredo (17)
also authored a recent review describing the process of
ribosome biogenesis, and a summary table discusses
several studies that have reported an increase in muscle
total RNA or rRNA concentrations days to weeks into re-
sistance training (353, 489–495). Since myofiber hyper-
trophy is typically detected after 15–20 training sessions
in humans (223, 310, 496), the increase in ribosomal pro-
duction appears to precede hypertrophy (see FIGURE 6).
A recent human study by Figueiredo et al. (497) indicates
that ribosomal DNA (rDNA) copy number, which can
range between hundreds and thousands of copies on an
individual-to-individual basis (498), is positively associ-
ated with ribosome biogenesis markers in response to an
acute bout of resistance exercise. These authors also
reported that a mechanical overload stimulus in mice
transiently alters the promoter methylation status of
genes associated with ribosome biogenesis, confirming
earlier findings that load-dependent epigenetic mecha-
nisms, in part, modulate ribosome biogenesis.
Strengthening the case for ribosome biogenesis being

a critical mechanism for load-induced skeletal muscle hy-
pertrophy, other research has indicated that the magni-
tude of ribosome biogenesis in response to different
loading paradigms is associated with hypertrophic out-
comes. For instance, Kirby and colleagues (477) reported
that older mice present impairments in load-induced skel-
etal muscle hypertrophy compared with younger mice
and this corresponded with a diminished ribosomal
response in the old mouse cohort. Nakada et al. (476) uti-
lized various forms of synergist ablation in rats to produce
four different levels of plantaris hypertrophy. Fourteen
days after overload, plantaris masses increased by 8% in
the first cohort, 22% in the second, 32% in the third, and
45% in the fourth. rRNA content increased by 80%, 120%,
and 150% in the latter three groups 5 days after overload,
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and the 5 day increase in translational capacity was
strongly correlated to 14 day muscle weight data. These
rodent findings have been validated in humans, in part,
by Hammarstr€om et al. (499), who reported that the
degree of muscle hypertrophy following 12 wk of resist-
ance training is associated with increased rRNA concen-
trations. A more recent study by Hammarstr€om et al.
(500) in humans also expanded these findings through a
time course examination of resistance training-induced
changes in rRNA levels. The authors reported that muscle
rRNA concentrations increased in response to the first
four training sessions, and this was followed by a pla-
teau and peak in concentrations after eight sessions.
Furthermore, the increases in muscle total RNA con-
centrations correlated with the magnitude of resistance
training-induced skeletal muscle hypertrophy. This lat-
ter finding was recently confirmed by Figueiredo et al.
(501), who reported that 2 wk of ambulatory recovery
from cast immobilization followed by 2 wk of resistance
training increases midthigh muscle CSA and rRNA
concentrations.
Despite the strong evidence suggesting that an

increase in ribosomal capacity plays a central role in
muscle hypertrophy, a few reports are inconsistent with
this notion. For instance, Goodman et al. (342) reported
that ribosome biogenesis occurs in the absence of

myofiber hypertrophy after 7 days of synergist ablation
in mice administered rapamycin, but whether this occurs
during longer-term mechanical overload was not
reported. Others have also shown that AAV-mediated
skeletal muscle Myc overexpression during a 2-wk
period does not stimulate muscle hypertrophy despite
upregulating ribosome biogenesis markers and muscle
protein synthesis (502). However, this may have been
due to the persistent expression of Myc, and as dis-
cussed with mTORC1 signaling, pulsatile Myc responses
to mechanical overload may be needed to contribute to
the hypertrophic response. Although these limited data
challenge the importance of ribosome biogenesis, most
of the studies discussed here support that increases in
translational capacity through ribosome biogenesis are
associated with the magnitude of skeletal muscle hyper-
trophy in response to mechanical loading.
An additional theme gaining traction, despite limited

evidence to date, is the notion of ribosome specializa-
tion being involved with load-induced skeletal muscle
hypertrophy. A review by Chaillou (18) suggested that
ribosome heterogeneity exists within myofibers in that
each ribosome likely contains a unique profile of ribo-
somal proteins and rRNA spliced variants that act to
modulate ribosome function. Ribosomal proteins can
also be subjected to posttranslational modifications

FIGURE 6. Timeline of ribosome biogen-
esis during load-induced skeletal muscle
hypertrophy. This schematic (constructed
with Biorender.com, with permission) pro-
vides a general timeline of ribosome bio-
genesis during periods of mechanical
overload. Importantly, researchers have
shown that ribosome biogenesis precedes
skeletal muscle (and myofiber) hypertro-
phy, and this can result in increases in
both ribosome content as well as ribo-
some concentrations. However, ribosome
concentrations renormalize after longer-
term training periods where myofiber hy-
pertrophy is evident.
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(e.g., phosphorylation, methylation, and acetylation),
which may increase ribosome heterogeneity within myo-
fibers (18). Perhaps most intriguing is the notion put forth
by Chaillou suggesting that ribosome specialization dur-
ing skeletal muscle hypertrophy may lead to enhanced
translational fidelity and selection events whereby
certain mRNAs are prioritized for translation. Potential
evidence of ribosome specialization comes from the
McCarthy laboratory (503) showing that the mRNA
expression of Rpl3 and Rpl3l is differentially affected in
skeletal muscle after synergist ablation (1400% and
�82%, respectively), whereas the mRNA levels of all
other genes encoding ribosomal proteins are modestly
affected or not affected at all. These authors performed
additional experiments demonstrating that the induction
of Rpl3l expression in vitro impaired myotube growth
and protein accretion by �23% and �14%, respectively,
compared with a control cell line. Beyond these data, no
published research to date has determined whether
ribosome specialization occurs during periods of resist-
ance training in humans and/or plays an appreciable
role in skeletal muscle hypertrophy as implicated in vitro.
Thus, like other mechanisms discussed in this review
with limited or incongruent data, the research potential
in this area is high.

4.1.4. The involvement of satellite cells in myofiber
hypertrophy.

Satellite cells were first observed in frog muscle by
Mauro (504) and Katz (505) in 1961 through TEM. As
noted above, rodent work by Schiaffino et al. (148) indi-
cated that satellite cell proliferation occurs in rodents af-
ter mechanical overload and that the fate of some of
these satellite cells is to become incorporated into over-
loaded myofibers (149). Since these landmark studies,
human investigations have provided evidence to sup-
port a mechanism in which satellite cell-derived myo-
blasts fuse to myofibers in response to resistance
training (70, 223, 480, 493, 506–516). A meta-analysis
by Conceição et al. (23) examined 27 resistance training
studies totaling 903 participants. The authors reported
that myofiber hypertrophy of �10% induces a modest
increase in myonuclear content and that a significantly
higher increase is observed when muscle hypertrophy
is �22%; notably, these effects are independent of age,
sex, and myofiber type composition. Increased satellite
cell abundance following either a resistance exercise
bout or longer-term resistance training has also been
shown to be correlated with the magnitude of skeletal
muscle hypertrophy (70, 222, 517, 518). Moreover,
although some evidence to the contrary exists (519),
increased satellite cell activation during periods of re-
sistance training has been reported to coincide with

skeletal muscle hypertrophy in older participants (520,
521).
Genetic mouse models have yielded tremendous

insight in this area as well. The Pax7-DTA mouse uses
the Cre-loxP system to kill satellite cells by driving the
expression of a diphtheria toxin A fragment in a cell-spe-
cific fashion through tamoxifen administration. In 2011,
McCarthy et al. (522) were the first to use the Pax7-DTA
mouse model to remove �90% of all satellite cells in
adult mice (4 mo of age). In short, the authors reported
that plantaris growth in response to 14 days of synergist
ablation is not impaired relative to control mice, thus pro-
viding the first evidence that satellite cell-mediated myo-
nuclear accretion is not obligatory for load-induced
skeletal muscle hypertrophy during this shorter time
frame. However, Egner et al. (523) replicated the experi-
mental approach utilized by McCarthy and colleagues to
show that satellite cells are necessary for load-induced
plantaris hypertrophy in juvenile Pax7-DTA mice (2–3
mo of age). These studies suggested that earlier matu-
ration phases likely influence the requirement for
satellite cells in overload-induced skeletal muscle hy-
pertrophy. Murach et al. (323) confirmed the age-de-
pendent requirement of satellite cells in reporting that
the plantaris muscle of 2-mo-old Pax7-DTA did not hy-
pertrophy in response to overload when satellite cells
were ablated. Goh and Millay prevented myonuclear
accretion in response to mechanical loading by inacti-
vating the Myomaker (Tmem8c) gene in satellite cells,
this being a gene required for satellite cell fusion
(524). In agreement with Egner and colleagues, these
authors found that satellite cell fusion is required for
increasing myofiber size following 14 days of synergist
ablation (525). Similarly, Englund et al. (526) reported
that muscle hypertrophy induced by 8 wk of resist-
ance-loaded wheel running is blunted in Pax7-DTA
mice in which satellite cells had been depleted.
Finally, a recent study by Kobayashi et al. (527) utilized
inducible satellite cell-specific Cdk1-knockout mice,
which show impaired satellite cell proliferation, to
demonstrate that myonuclear accretion is blunted and
increases in fCSA are limited after 14 days of synergist
ablation. Although some conflicting evidence exists,
these mouse data form a collective paradigm agree-
ing with the human data to suggest that satellite cells
are needed for optimizing load-induced skeletal mus-
cle hypertrophy in maturing rodents and/or during lon-
ger periods of mechanical loading in adult rodents.
Furthermore, although several of these studies used
the synergist ablation model, the data from Englund
and colleagues support that satellite cells are needed
to optimize hypertrophy induced by progressive re-
sistance-loaded wheel running, which is a more physi-
ological model.
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Although data discussed in the prior paragraphs pro-
vide strong support to satellite cells assuming a critical
role in resistance training-induced skeletal muscle hy-
pertrophy, hypotheses in this area are being rapidly
refined given that this is an intensely studied topic in
muscle biology. For instance, Murach et al. (25) authored
a recent review citing human resistance training studies
that show that myofiber hypertrophy occurs either
before or without myonuclear accretion (223, 528, 529),
and similar data were published thereafter (512, 530–
533). These eight studies reported mixed and type II
myofiber radial size increases that averaged �15–20%;
thus it is likely that some participants from these studies
did not obtain the �22% fCSA increase threshold pro-
posed by Conceição et al. (23), thereby explaining the
lack of myonuclear accretion. Murach and colleagues
also provide evidence to suggest that type II myofibers
exhibit the ability to hypertrophy with less myonuclear
accretion relative to type I myofibers, which results in
larger type II fiber-specific myonuclear domains. Type
II myofiber myonuclei have also been shown to com-
pensate for the loss of myonuclear accretion via satel-
lite cell depletion by significantly increasing their
transcriptional output in response to mechanical over-
load induced by synergist ablation (534); alternatively
stated, the myonuclei of type II myofibers appear to
possess a transcriptional reserve to support myofiber
growth in the absence of myonuclear accretion. One
of the challenges in understanding myonuclear dy-
namics is that the relationship between myonuclear
content and domain size is not constant for different-
sized myofibers. For example, in opposition to the
concept of a constant myonuclear domain with chang-
ing myofiber size, smaller myofibers have markedly
smaller domains, and myofiber perimeter (rather than
myofiber CSA) per myonucleus is constant across a
fCSA range from 2,000 to 8,000 lm2 (520, 535).
Additionally, there are recent data from the Miller lab-
oratory in mice showing increased DNA synthesis of
myonuclei in vivo using D2O, and this process is
enhanced with synergist ablation-induced mechanical
overload in the plantaris muscle (536). Other reports have
indicated that bone marrow-derived cells and other stro-
mal cells (e.g., Twist2 positive and Hox11 positive) provide
additional sources of myonuclei (537–539), but more
research is needed to definitely determine whether these
cells contribute myonuclei in response to mechanical
overload. Hence, although satellite cells are seemingly
critical for optimizing load-induced skeletal muscle hyper-
trophy, these data imply that much remains unknown
regarding myonuclear dynamics, and satellite cell fusion
may not be the sole source of newly acquired myonuclei.
As an interesting aside, a consequence of the satellite
cell depletion studies using the Pax7-DTA model is the

revelation of nonfusion roles that satellite cells seemingly
exhibit during different loading paradigms. Independent
lines of evidence support that satellite cells interact with
myofibers and fibroblasts to promote extracellular matrix
remodeling during tissue repair (74, 540–542). This cell-
to-cell communication also appears to be bidirectional,
with evidence of muscle fibroblasts stimulating satellite
cell fusion (74). Mice depleted of fibroblasts have altered
satellite cell dynamics and smaller regenerating myofib-
ers after injury (540). In the absence of muscle damage
(i.e., a state of strong extracellular matrix adhesion), satel-
lite cells remain quiescent. However, satellite cells rapidly
proliferate after a bout of unaccustomed resistance exer-
cise with associated tissue damage, and this occurs
without myonuclear accretion and coincides with an up-
regulation in genes involved with extracellular matrix
remodeling (543). The Pax7-DTA genetic mouse model
has been used to demonstrate that longer-term (8 wk)
loading blunts skeletal muscle hypertrophy, and this coin-
cides with a significant increase in fibrosis (541, 544). In
vitro experiments from these studies have provided evi-
dence showing that primary myogenic progenitor cells
communicate with primary fibroblasts via miRNA-contain-
ing exosomes to downregulate Rrbp1, a master regulator
of collagen biosynthesis, as well as collagen-related
mRNAs. These studies by the Peterson laboratory sup-
port a mechanism in which satellite cells assume a nonfu-
sion role in regulating extracellular matrix remodeling
during muscle growth as summarized by Murach et al.
(545). The findings of Roberts et al. (80), Moro et al. (546),
and Damas et al. (533) showing that different loading
paradigms increase type II myofiber hypertrophy and sat-
ellite cell number in the absence of myonuclear accretion
suggest that this mechanism may also be operative in
humans; however, these studies did not examine extrac-
ellular matrix markers or miRNAs. Beyond fibroblasts, sat-
ellite cells communicate with other stromal cells during
the early stages of hypertrophy (e.g., endothelial cells,
fibro-adipogenic progenitors, and mesenchymal progeni-
tors) (542, 547, 548), as shown in the context of muscle
regeneration (549). Hence, the nonfusion roles that satel-
lite cells assume during mechanical overload may be
involved in skeletal muscle hypertrophy, and this area of
research is ripe for further investigation. Content in this
section review is summarized in FIGURE 7.

4.2. Other Mechanisms Involved with Skeletal
Muscle Hypertrophy

4.2.1. Genetic variants.

Genetic polymorphisms likely play a role in the hyper-
trophic response to resistance training in humans.
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Heterogeneous responses in hypertrophic outcomes
exist with weeks to months of training (27), and genetic
differences between individuals are commonly touted
as being partially responsible for this effect. A recent
meta-analysis including 24 heritability studies indicates
that strength adaptations to resistance training possess
�50% genetic component (550), and this likely holds
true for hypertrophic outcomes. In a larger-scale study,
Stokes et al. (250) recently reported that a strong
genetic component exists for resistance training and
limb immobilization adaptations. Angleri et al. (531) more
recently reported that two different unilateral leg train-
ing paradigms in 20 resistance-trained subjects led to
statistically similar increases in mean fCSA (within-sub-
ject r value¼0.89 for this measure, P < 0.05). Authors
from both studies suggested that intrinsic biological
factors (i.e., genetic factors leading to transcriptome-
wide responses that promote training adaptations) are
likely responsible for these observed effects. Kilikevicius
et al. (551) reported that soleus and plantaris hypertrophy
elicited by 28 days of synergist ablation differs between
eight strains of laboratory mice, and the authors con-
cluded that this is likely mitigated by genetic differences
between strains.
Despite these data suggesting that a genetic compo-

nent exists for skeletal muscle hypertrophy, candidate
polymorphisms that affect hypertrophic outcomes have
varied and tempered enthusiasm in this area. The

Functional Single Nucleotide Polymorphisms Associated
with Human Muscle Size and Strength (FAMuSS) multi-
center trial was a targeted analysis that provided novel
insight into polymorphisms that affect the hypertrophic
response to 12 wk of single-arm resistance training
(552). In short, the authors examined �500 gene var-
iants in 1,300 younger adult men and women and
reported that polymorphisms in 17 genes (ACE, ACTN3,
ANKRD6, BMP2, CCL2, CCR2, CNTF, FST, MSTN, IGF1,
IL15, IL15Ra, LEP, LEPR, NOS3, RETN, SPP1) are associ-
ated with muscle size changes during resistance train-
ing. Contrary to these findings, Vann et al. (234) recently
used a DNA microarray to examine whether any of the
�315,000 polymorphism targets are associated with
changes in whole body lean mass or mean myofiber
fCSA with 12 wk of resistance training in 109 males. In
short, none of the assayed polymorphisms, including
many of those from the FAMuSS trial, was significantly
associated with hypertrophic outcomes. Although the
FAMuSS trial and the study published by Vann and col-
leagues employed similar-length training interventions,
discrepancies between studies could have been due to
differences in training modality (single-arm vs. full-body
training, respectively), methods to quantify hypertrophy
(MRI vs. DXA and VL myofiber histology, respectively),
and the lower number of participants in the study by
Vann and colleagues. However, one insightful finding by
Vann and colleagues was that one annotated intronic

FIGURE 7. Summary of the fusion and nonfusion roles of satellite cells. This schematic (constructed with BioRender.com, with permission) provides a
general overview of how satellite cells can respond to mechanical overload. The fusion role has been well defined, and this involves satellite cell prolif-
eration (acute response) followed by the fusion of a subpopulation of satellite cells to increase myonuclear number. The nonfusion role involves satel-
lite cells secreting exosomes containing microRNA (and presumably other cargo). Exosomes can transport this cargo to myofiber and nonmyofiber cell
types in the interstitial space to regulate gene expression. In the example pictured, satellite cells are regulating gene expression in myofibers and fibro-
genic cells, and this may affect extracellular matrix remodeling during myofiber hypertrophy (as discussed in main text). Satellite cells are likely to com-
municate with other cell types, and this is also illustrated via cell-cell communication with vascular endothelial cells. ECM, extracellular matrix.
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gene variant (GLI3; rs10263647) is significantly associ-
ated with mean fCSA changes. GLI3 encodes a tran-
scription factor that regulates Sonic hedgehog signaling
(553), and Vann and colleagues reported that the GLI3
T/C and C/C genotypes achieved myonuclear addition
in response to training, whereas the T/T cohort did not.
The Gli3 gene has been shown to regulate satellite cell
differentiation and fusion in mice by affecting the expres-
sion of myogenic regulatory factors (i.e., Myf5, Myog, and
Myod1) (554). Hence, it is possible that those with the T/T
genotype have impairments in satellite cell fusion.
However, the significance threshold (P< 1� 10�5) utilized
by Vann and colleagues was adjusted for exploratory pur-
poses and differs from the commonly utilized significance
threshold in genome-wide association studies (GWAS)
(P< 1� 10�8). Thus, more research is needed to validate
these findings. Additionally, a notable limitation with sin-
gle-gene candidate studies and GWAS is the lack of reso-
lution in detecting novel polymorphism candidates, and
this issue has been illustrated in other research disci-
plines. For instance, Rivas et al. (555) utilized deep DNA
sequencing to interrogate 56 genes and gene regions
previously associated with Crohn’s disease. These authors
identified 70 novel protein-altering variants that likely con-
tribute to the disease phenotype. Novel polymorphisms
related to insulin secretion and glucose tolerance have
also been recently identified with deep DNA sequencing

(556). Findings from both studies imply that unidentified
gene variants related to hypertrophy may exist, and future
deep DNA sequencing efforts in this area will likely lead to
fruitful discoveries. FIGURE 8 provides a summary of what
has been performed to date as well as future directions
that could be pursued to increase the knowledge base in
this area.
It is important to reiterate that genetic mouse models

are useful tools whereby genes can be overexpressed
or knocked out to yield a hypertrophic phenotype (231).
These models, however, do not support that genetics is
the prominent mechanism involved in load-mediated
skeletal muscle hypertrophy. As a contextual example,
the myostatin (MSTN) gene received considerable atten-
tion in the late 1990s and early 2000s as a gene that lim-
its muscle growth. McPherron and Lee (557) reported
that Belgian Blue cattle harbored an 11-nucleotide dele-
tion in the MSTN gene that led to a doubling in muscle
mass relative to normal cattle. Around the same time
McPherron and colleagues developed Mstn-knockout
mice, and these mice exhibit robust hypertrophy in the
absence of mechanical overload (558). Seven years
later, a case report in a child indicated that a rare MSTN
mutation led to a hypermuscular phenotype (559). A
proliferation of myostatin-related research ensued in the
field, and various human studies sought to examine
whether MSTN-related polymorphisms are associated

FIGURE 8. Past research and future directions regarding the delineation of gene polymorphisms associated with hypertrophic outcomes. This sche-
matic (constructed with BioRender.com, with permission) provides a summary of past efforts examining genetic polymorphisms associated with the
skeletal muscle hypertrophic response to resistance training in humans. As mentioned in main text, future methods using deep DNA sequencing and
bioinformatics are needed to garner additional information in this area. FAMuSS, Functional Single Nucleotide Polymorphisms Associated with Human
Muscle Size and Strength; RT, resistance training; SNP, single-nucleotide polymorphism.
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with muscle mass or skeletal muscle hypertrophy in
response to resistance training (234, 560–562). Notably,
most of these studies have revealed few to no appreci-
able effects regarding MSTN genotype-phenotype (hy-
pertrophy) outcomes (234, 561, 562). Hence, readers
should appreciate that genetic mouse models (and case
reports regarding rare human mutations) can be useful in
identifying proteins involved with skeletal muscle hyper-
trophy, albeit this process is a complex trait that likely
involves still-to-be resolved polymorphisms as well as the
other mechanisms discussed here.

4.2.2. Epigenetic alterations, with an emphasis on
DNAmethylation.

Geneticist Adrian Bird was a pioneer in the scientific dis-
cipline of epigenetics, or changes in gene activity that
do not involve DNA sequence alterations. In a landmark
review, Bird (563) discussed research in the 1980s,
much of which was from his laboratory, detailing the
presence and postulating the significance of DNA meth-
ylation in eukaryotes. Through decades of subsequent
research, it is now well appreciated that gene expres-
sion is regulated, in large part, through DNAmethylation.
Approximately 98% of DNA methylation occurs on cyto-
sine residues present in cytosine guanine dinucleotide
pairing sites (CpG sites), and DNA methylation is cata-
lyzed by DNA methyltransferase (DNMT) enzymes
whereas demethylation is catalyzed by ten-eleven trans-
location (TET) enzymes (564–567). Increased methyla-
tion levels in a promoter or enhancer region of a gene
generally downregulate RNA transcription by either
impairing transcription factor binding or compacting
DNA and making it transcriptionally inaccessible (567).
Additionally, although data in skeletal muscle are lack-
ing, in vitro work in budding yeast suggests that altera-
tions in genome-wide DNA methylation patterns can
cause chromatin remodeling events that may indirectly
impact the expression of genes by allowing certain DNA
regions access to transcriptional machinery (568).
More recent enthusiasm has surrounded how exer-

cise alters the collective skeletal muscle DNA methyl-
ome, and several reviews have been published on this
topic (37, 39, 569, 570). Barr�es et al. (571) provided the
first evidence showing that changes in skeletal muscle
DNA methylation transiently occur across various meta-
bolic genes after a single high-intensity aerobic exercise
session in humans. These authors also reported that the
postexercise DNA demethylation patterns across vari-
ous metabolic genes correspond with the mRNA expres-
sion patterns of these genes. Subsequent genome-wide
methylation (or methylome) studies in humans have indi-
cated that resistance training elicits the demethylation
and upregulation of genes related to actin/cytoskeletal,

extracellular matrix, growth-related, and/or metabolic
pathways (255, 257). Moreover, some genes retain a
demethylated signature after an earlier period of resist-
ance training and detraining, and the mRNA expression
of some of these genes is enhanced during the retrain-
ing period. These data have led Sharples and col-
leagues (572) to hypothesize that skeletal muscle
possesses an epigenetic memory following periods of
resistance training (or “epi-memory”), which could mech-
anistically explain why an increase in muscle mass
occurs more rapidly during retraining periods following
weeks to months of detraining. Also compelling are two
recent collaborative studies from the Roberts and
Sharples laboratories. The first study by Ruple et al.
(258) indicated that 6 wk of resistance training in 65-yr-
old men causes a robust demethylation of the mito-
chondrial genome and these methylation changes
correspond with an increased mRNA expression of
numerous mitochondrion-specific genes in the pres-
ence of skeletal muscle hypertrophy. The second
study by Sexton et al. (573) in previously trained col-
lege-aged men indicated that global skeletal muscle
DNA methylation patterns are more robustly altered 3
h versus 6 h after a resistance exercise bout (239,951
vs. 12,419 CpG site methylation changes, respectively;
FIGURE 9). Like the aforementioned endurance exercise
data discussed by Barr�es and colleagues, these data sug-
gest that alterations in skeletal muscle DNA methylation
occur rapidly after a loading stimulus. Moreover, these
authors used bioinformatics to report that genes related
to “focal adhesion,” “MAPK signaling,” and “PI3K-AKT sig-
naling” are significantly affected at both the DNA methyl-
ation and transcriptome-wide levels.
Rodent data also exist supporting dynamic alterations

in myonuclear DNA methylation accompanies skeletal
muscle hypertrophy. Figueiredo et al. (497) reported that
a mechanical overload stimulus in mice alters the pro-
moter methylation status rDNA to favor transcription.
von Walden et al. (254) used the HSA-GFP (HSA-rtTA;
Rosa26-H2B-GFP) genetic mouse model, as well as
myonuclear capture and bisulfite sequencing techni-
ques, to show that 11,210 CpG sites are hypomethy-
lated and 3,491 sites are hypermethylated with
plantaris hypertrophy induced by synergist ablation.
Several CpG sites in proximity to genes involved in
mTORC1 signaling, autophagy, and ribosome biogen-
esis are also hypomethylated, and an upregulation in
several corresponding mRNAs also occurs. Wen et al.
(286) used this same mouse model to show that
enhanced muscle growth (relative to naive hypertrophy)
occurs after detraining-retraining. Notably, detraining-
retraining hypertrophy corresponds with a myonuclear
methylome “memory” signature, which resonates with the
human data from Sharples’s group. Murach et al. (285)
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subsequently used the HSA-GFP genetic mouse model,
as well as myonuclear capture and bisulfite sequencing
techniques like von Walden and colleagues, to elucidate
epigenetic adaptations that occur after 8 wk of progres-
sive resistance-loaded wheel running in two groups of
mice. The first group of mice had resident myonuclei la-
beled before training to allow for their capture for DNA
methylation analysis after training. The second group of
mice had both resident myonuclei and newly acquired
myonuclei via satellite cell-mediated myonuclear addition
analyzed after training. Bioinformatics indicated that
genes related to the PI3K-AKT and FOXO signaling path-
ways favored hypomethylation in the first group of mice.
In contrast, genes associated with RNA polymerase II-
mediated transcription and cell-to-cell adhesion pathways
favored hypomethylation in the second group of mice
(285). Additionally, multiple CpG sites near the 28S rDNA
transcription termination area and one CpG site in the
rDNA enhancer region favored hypomethylation in the
second versus the first group of mice. These data sug-
gest that resident myonuclei may utilize DNA hypome-
thylation to upregulate genes associated with protein
turnover in response to mechanical overload, whereas
newly acquired nuclei may utilize this process to

upregulate genes associated with satellite cell prolif-
eration, fusion, and ribosome biogenesis. The Murach
laboratory (574) more recently reported that loaded
wheel running in older mice alters muscle DNA meth-
ylation suggestive of reduced biological aging (i.e.,
the Horvath and developmental muscle clocks) and
used a skeletal muscle-specific Myc-inducible mouse
to suggest that mechanical overload operates through
MYC to elicit these changes.
These collective data from independent research

groups demonstrate that myonuclear DNA, DNA from
cells in the extracellular matrix, and mitochondrial DNA
display altered methylation profiles in response to me-
chanical overload in rodents or resistance training in
humans. However, as with other data discussed here,
much of the epigenetics work to date has been descrip-
tive and more data are needed to confirm that mechani-
cal overload-induced alterations in DNA methylation
result in appreciable mRNA and protein expression
changes. It is also difficult to determine the impact that
DNA methylation has on downstream processes given
that some data in this area indicate a smaller than antici-
pated overlap of DNA methylation changes and mRNA
expression changes. In this regard, Sharples’s group

FIGURE 9. Skeletal muscle genome-wide DNA methylation and transcriptome responses to a bout of resistance exercise. This schematic (con-
structed with BioRender.com, with permission) summarizes recent data [Sexton et al. 2023 (573)] demonstrating alterations in skeletal muscle tissue
DNA methylation status after a bout of resistance exercise in humans. The researchers concluded that 1) alterations in DNA methylation statuses occur
very rapidly (i.e., 3 h vs. 6 h after exercise); 2) contrary to past hypotheses suggesting that exercise generally elicits a reduction in DNA methylation,
more hypermethylation events occurred 3 h after exercise relative to hypomethylation events; and 3) alterations in DNA methylation patterns likely pre-
cede and are, in part, responsible for altered mRNA expression patterns. HIF, hypoxia-inducible factor; PI3K, phosphatidylinositol 3-kinase.
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(575) recently compared methylome and transcriptome
data in muscle samples collected from humans 30 min
and 24 h after various high-intensity running protocols.
Only 431 of 879 genes were reported to exhibit exer-
cise-induced mRNA expression patterns corresponding
to DNAmethylation patterns. More striking are data pub-
lished by Laker et al. (576) where skeletal muscle
transcriptome and methylome data were obtained in
humans before and after three resistance exercise bouts
over a 9-day period. In short, RNA-sequencing indicated
that training alters the expression of 2,616 mRNAs, and
methylome analysis using reduced representation bisul-
fite sequencing (RRBS) indicates that 474 genomic
regions are differentially methylated. Surprisingly, only
54 genes exhibited DNA methylation changes that cor-
respond to mRNA expression changes following train-
ing, indicating that DNA methylation changes are only
associated with only �2% of the genes whose mRNA
abundances are altered. Indeed, this discordance may
be due to the timing of tissue acquisition (307). For
instance, many of the load-induced alterations in DNA
methylation patterns are seemingly transient as dis-
cussed above (i.e., within 3 h after a resistance exercise
bout), and these events may affect mRNA expression
patterns hours to days thereafter. In support of this hy-
pothesis, Telles et al. (577) examined DNA methylation
and mRNA expression time course changes for select
myogenic regulatory factors (MYOD1, MYF5, and MYF6)
immediately after and 4 h and 8 h after a single bout of
resistance, high-intensity interval, and concurrent exer-
cise. Although the methylation and mRNA expression
responses were reported to be interrelated, the respec-
tive profiles were not synchronized at the postexercise
time points; specifically, mRNA responses to promoter
methylation events seemingly occur after �8 h. The
aforementioned study from Sexton and colleagues (573)
also indicates that global DNA methylation patterns 3 h
after a resistance exercise bout exhibit a high associa-
tion with global mRNA expression patterns 6 h after
exercise. Thus, there is still much to learn about how
dynamic changes in DNA methylation temporally affect
gene expression.
Finally, unlike other mechanisms discussed in this

review where genetic mouse models have provided
cause-and-effect relationships, no study to date has
examined how genetic mouse models harboring modified
genes that affect skeletal muscle DNA methylation impact
overload-induced hypertrophy. Interestingly, Wang et al.
(578) reported that Tet2-knockout mice do not exhibit
impairments in postnatal muscle development, albeit
these mice presented fewer newly formed myofibers in
response to cardiotoxin-induced injury compared to wild-
typemice. These authors also generated tamoxifen-induc-
ible Tet2-knockout mice (i.e., Pax7CreERT2:Tet2 flox/flox

mice where Tet2 knockout occurs specifically in satellite
cells), and similar effects were noted. Given that muscle
DNA hypomethylation is commonly reported during peri-
ods of overload and TET2 catalyzes DNA demethylation,
using similar mouse models with mechanical overload
paradigms will provide more compelling evidence as to
whether explicit DNA hypomethylation events at certain
promoter regions are required for skeletal muscle
hypertrophy.

4.2.3. Muscle proteolysis.

As discussed in other sections of this review, many
molecular-based studies in the field have focused on
examining mTORC1 signaling and/or either mixed or
myofibrillar protein synthesis rates. The reasons for such
interrogations are twofold. First, data in the field indicate
that muscle protein synthesis (rather than muscle prote-
olysis) is more responsive to mechanical loading during
well-fed states (579, 580), and Brook et al. (581) have
similarly suggested that “. . .the measurement of [muscle
protein synthesis] remains a cornerstone for under-
standing the control of hypertrophy—mainly because it
is the underlying driving force behind skeletal muscle
hypertrophy.” Second, there are logistical issues that
preclude assessing muscle protein breakdown rates
and related mechanisms. Unlike protein synthesis in
which mTORC1 acts as a central signaling hub that con-
verges at the ribosome, there are several proteolytic
mechanisms operative in skeletal muscle including the
ATP-dependent ubiquitin proteasome pathway, calpain-
mediated proteolysis, and lysosome-mediated autoph-
agy (582, 583). Given the increased complexity of mus-
cle proteolysis regulation, it is inherently more difficult to
ascribe a particular proteolytic mechanism as being
involved (rather than coinciding) with mechanical over-
load-induced skeletal muscle hypertrophy. Examining
proteolysis rates in humans can also be technically chal-
lenging and invasive (e.g., with tracer infusions or using
the invasive arterial-venous balance method requiring ar-
terial and venous cannulations), and other methods
require additional analysis and expertise (e.g., assessing
isotope dilution in the free muscle amino acid pool for the
extrapolation of breakdown rates) (583). Additionally,
there are several more assumptions that are applied
when calculating muscle protein breakdown versus syn-
thetic rate kinetics. Several studies have assessed how
proteolysis-related biomarkers (e.g., poly-ubiquitinated
proteins, proteasome activity, and atrogene mRNAs) are
transiently and chronically affected during periods of re-
sistance training in humans (308, 369, 492, 493, 584–
589) or during periods of mechanical overload in rodents
(80, 474, 590). The overactivation of muscle proteolytic
pathways in genetic mouse models or during longer-term
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fasting, prolonged unloading, or diseased states mecha-
nistically contributes to muscle atrophy (591–594). Under
normal physiological circumstances, however, a dysregu-
lation in one or more of the proteolytic systems in skeletal
muscle may impair hypertrophy. This theme subtly
emerged in human tracer studies in muscle protein syn-
thesis, and breakdown rates were shown to be tightly
coupled days after exercise (178, 595). Several human
studies have since shown that a bout of resistance exer-
cise transiently upregulates mRNAs, proteins, or protein
signaling involved with muscle proteolysis (e.g., TRIM63
and FBXO32 mRNAs, calpain mRNAs, and autophagy
markers) (308, 345, 369, 584–587, 596–600), and similar
data exist after chronic training (589, 600, 601). Baehr et
al. (590) demonstrated that proteasome activity, as well
as the mRNA expression of Trim63 and Fbxo32, increase
after 2 wk of synergist ablation in mice. Abou Sawan et al.
(41) also contend that, although muscle lysosomes are
generally viewed as cellular “garbage cans” that rid the
cell of damaged organelles, research into their emerging
roles includes nutrient sensing, regulation of protein syn-
thesis, and cell growth.
Genetic mouse models have also provided additional

evidence to suggest that a dysregulation of components
in proteolytic mechanisms may impair hypertrophy. For
instance, ATG7 is involved in autophagosome formation,
and Masiero and Sandri (602) have shown that robust
muscle atrophy occurs in Atg7-null mice. PSMC4 is a
subunit of the 20S proteasome, and a similar atrophy
phenotype has been reported in Psmc4-knockout mice
(603). Visual inspections of myofibers by TEM were pro-
vided in both papers, and both reports indicate that
these knockout mouse lines possess disorganized myo-
fibrils, abnormal intracellular vacuoles, disruptions to the
sarcoplasmic reticulum, and mitochondria with abnormal
appearances. Hence, a complete disruption in one or
multiple proteolytic mechanisms likely leads to an inabil-
ity of myofibers to purge damaged macromolecules or
organelles, which in turn leads to a broader catabolic (or
antianabolic) signaling cascades. Work by Steinert and
colleagues (267) further adds to this working hypothesis.
As mentioned, a phosphoproteomic approach was used
to demonstrate that the S473 phosphorylation of the
TRIM28 protein transiently occurs after maximal hind-
limb contractions in mice. In addition to showing in mice
that myofibers hypertrophy when transfected with a
plasmid encoding a phosphomimetic version of TRIM28,
the authors reported that tamoxifen-inducible Trim28-
knockout mice exhibit myofiber atrophy as well as an
impairment in hypertrophy in response to mechanical
overload induced by synergist ablation. The authors
posited that TRIM28 phosphorylation may stimulate the
E3 ligase activity of the protein (note that E3 ligases act
to transfer ubiquitin from an E2 ubiquitin-conjugating

enzyme to targeted proteins) and, subsequently, accel-
erate proteasome-mediated proteolysis to enhance
protein turnover and promote muscle hypertrophy.
However, these authors did not extensively pursue this
mechanism. Hughes et al. (604) recently demonstrated
that the knockdown of an E3 ligase (Ubr5) in murine
skeletal muscle leads to myofiber atrophy. Notable in
vitro data also exist in this area of research. Osburn et al.
(605) demonstrated that the pharmacological blockade
of the proteasome and calpains in murine myotubes
abrogates leucine-induced increases in muscle protein
synthesis. Lewis et al. (606) demonstrated that
autophagy inhibition blocks myofibrillar protein syn-
thesis rates in L6 myotubes. Although kinetic interrog-
ations were not performed in either investigation,
both groups speculated that proteolysis serves to pro-
vide an intracellular pool of free amino acids that is
sufficient to support muscle protein synthesis (i.e., in-
tracellular recycling of amino acids).
Although data in the paragraph above support

enhanced proteolytic activity being involved with skele-
tal muscle hypertrophy, there is counterevidence sug-
gesting that these mechanisms are downregulated as
well. For instance, Roberts et al. (80) reported a signifi-
cant reduction in proteasome activity in hypertrophied
plantaris and soleus muscles following 14 days of dual
overload induced by synergist ablation. Human data
from these same researchers indicates that 6 wk of
high-volume resistance training reduces muscle polyubi-
quitinated protein levels (an indirect measure of E3
ligase and proteasome activities) in what were defined
as higher and lower hypertrophic responders (492).
Human data that have linked changes in protein turn-
over (i.e., the balance of muscle protein synthesis
and muscle protein breakdown) to the hypertrophic
response to resistance training are also lacking. Only
two studies have utilized tracer techniques to concur-
rently assess protein turnover in humans after resist-
ance training (607, 608), and one of these studies
demonstrated improved muscle net balance in the
postabsorptive state and that pre- to posttraining
changes in basal muscle protein synthesis rates signif-
icantly correlate with changes in VL muscle thickness.
Improvements in the intracellular recycling of amino
acids may occur in response to resistance training or
be a feature of higher responders to promote a more
efficient protein turnover and muscle hypertrophy.
However, no research has directly measured the intra-
cellular recycling of amino acids from proteolysis to
protein synthesis in this context. Further analysis of
this hypothesis with utilization of isotope tracers,
three-compartment modeling (609), and non-steady-
state equations (303) could provide more insight into
the role(s) that proteolysis has in intracellular amino
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acid recycling for muscle protein synthesis and anabo-
lism during hypertrophy. Depending on the method
used and duration and form of tracer labeling,
researchers should consider adjusting for possible
changes in the protein pool size, use steady-state
conditions, or, when this is not possible, adjust with
non-steady-state equations appropriate to the chosen
tracer model.
These collective data indicate that fully operational

proteolytic mechanisms are likely integral for mechani-
cal overload-induced skeletal muscle hypertrophy. What
remains less understood, however, is how the coupling
between protein synthesis and muscle protein break-
down is modulated during periods of overload to regu-
late skeletal muscle hypertrophy. Emerging methods
that provide insight at the level of the single protein
(610), single fiber, and even maintaining the spatial
dimensions with emerging technologies such as nano-
scale secondary ion mass spectrometry (nanoSIMS) (611)
have the potential to greatly advance our understanding
of this area of muscle physiology.

4.2.4. A reduction in myostatin mRNA expression
and signaling markers.

As mentioned in sect. 4.2.1, myostatin (MSTN) has
received considerable attention as a negative regulator
of muscle growth since the landmark reports by
McPherron and colleagues. MSTN is a putative myokine
that is part of the transforming growth factor (TGF)-b
superfamily, and signaling pathways associated with
MSTN have been described in detail (612–615). Briefly,
MSTN mRNA is translated into a propeptide secreted
into the extracellular matrix. Once the latent propeptide
is cleaved by extracellular matrix proteases, MSTN forms
an active dimer that binds to the activin receptor type-
2B (ACVRIIB). Ligand binding promotes the recruitment
and activation of the activin receptor-like kinase-4 and
-5 (ALK4 and ALK5) serine/threonine type 1 receptor ki-
nases, which phosphorylate the SMAD2/3 heterodimer
transcription factor (616). The SMAD2/3 complex inter-
acts with SMAD4, and this heterotrimer enters the nu-
cleus to transcriptionally regulate numerous genes that
contain SMAD binding sites. It is difficult to determine
which MSTN-regulated genes affect hypertrophic out-
comes given that in vitro data indicate that 1,787 genes
contain SMAD2/3 binding sites, 925 genes contain
SMAD4 binding sites, and the TGF-b-mediated activa-
tion of SMAD2/3 can either upregulate or downregulate
a fraction of these genes (617). However, MSTN signal-
ing can affect the expression of genes without putative
SMAD binding elements. For instance, proteolysis-
related mRNAs are upregulated in myotubes treated
with MSTN in vitro (618), in rat muscles incubated with

MSTN (619), and in mice that express a constitutively
active mutant of ALK5 (620). Furthermore, rat muscles
subjected to MSTN gene electrotransfer display an atro-
phy phenotype coincident with a downregulation in
structural genes (myosin heavy chain IIb, troponin I, and
desmin) and myogenic transcription factors (MyoD and
myogenin) (621). Data in Mstn-knockout mice suggest
that MSTN signaling upregulates collagen-related genes
(622) and genes that inhibit canonical Wnt signaling
(623) in skeletal muscle.
Nongenomic MSTN signaling events have also been

documented in skeletal muscle. For instance, MSTN-
treated myotubes exhibit a reduction in AKT activity and
mTORC1 signaling (624). Sartori et al. (620) reported that
SMAD2/3 inhibition through shRNA knockdown pro-
motes muscle hypertrophy in mice through enhanced
mTORC1 signaling. Hulmi et al. (625) similarly demon-
strated that blocking MSTN signaling in mice through in-
traperitoneal injections of the soluble activin receptor IIb
increases mTORC1 signaling and muscle protein synthe-
sis after 1–2 days and myofiber size after 2 wk of treat-
ment. Also mentioned previously, Mstn-knockout mice
exhibit a robust hypertrophic phenotype (558), and
other genetic mouse models have been used to show
that the conditional overexpression of follistatin (Fst), a
MSTN inhibitor, and a mutated form of Acvr2b increases
whole body muscle mass (612). More recent data in mice
indicate that the overexpression of Fst increases the
protein expression of several mTORC1 signaling-related
proteins (e.g., AKT and p70S6k) as well as basal-state
and insulin-stimulated muscle protein synthesis rates
(626). Recent clinical trials in overweight and insulin-re-
sistant participants have also indicated that 10 or 48 wk
of bimagrumab administration, which blocks the activin
type II receptor, significantly increases muscle mass and
reduces fat mass (627, 628). Although resistance train-
ing was not employed in either study, these data reiter-
ate that the blockade of MSTN signaling increases
muscle mass in humans. Collectively, these data sug-
gest that MSTN operates through genomic and nonge-
nomic signaling mechanisms to upregulate proteolytic
genes, downregulate structural genes and muscle-spe-
cific transcription factors, and reduce AKT-mTORC1
signaling in myofibers (FIGURE 10). Additionally, inde-
pendent lines of evidence in mice indicate that longer-
term MSTN inhibition does not operate through satel-
lite cells to affect myofiber hypertrophy and, instead,
likely acts through the other mechanisms discussed
above (629–631).
Mechanical overload can act in various manners to

downregulate MSTN signaling. Multiple studies in rats
have indicated that one to four bouts of concentric,
eccentric, and/or isometric contractions downregulate
skeletal muscle Mstn mRNA levels (381, 382, 632). In
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mice, Lessard et al. (463) reported that 14 days of syner-
gist ablation-induced mechanical overload enhances
JNK/MAPK signaling, which acts to alter SMAD2/3/4
binding activity to gene promoter regions. In humans,
Pillon et al. (272) analyzed transcriptome-wide array
data from eight resistance exercise studies and reported
that MSTN mRNA is downregulated across multiple
studies hours to days after exercise. Hulmi and col-
leagues (633–635) published several reports using
qPCR to show that MSTN mRNA is downregulated in
response to one bout of resistance exercise, and Dalbo
and colleagues (587, 636), Louis et al. (308), and
Fernandez-Gonzalo et al. (370) have published similar
reports. Hulmi et al. (635) also reported that correlations
existed between MSTN mRNA levels 48 h after a naive
resistance exercise bout and changes in whole body
muscle mass (r ¼ �0.88, P ¼ 0.002) and VL muscle
thickness (r ¼ �0.51, P ¼ 0.12) after prolonged resist-
ance training. Other reports have also indicated that
reductions in serum MSTN concentrations and skeletal
muscle MSTN mRNA occur after longer-term resistance
training (493, 637–641), and a recent study by McIntosh
et al. (642) shows that resistance exercise downregu-
lates MSTN mRNA levels 3 and 6 h after exercise and
upregulates muscle follistatin protein levels 6 h after
exercise. Collectively, these findings provide the basis
for a model in which MSTN signaling is inhibited via

mechanical overload through the downregulation of
MSTN mRNA and upregulation in muscle follistatin
protein, and through other signaling mechanisms
such as increased MAPK activation. Additionally, the
load-induced reduction in MSTN mRNA appears to be
both transient (i.e., after a single exercise bout) and
also persisting weeks/months into training.
Although the abovementioned reports are compel-

ling, data are not consistent in this area. Willoughby
(643) reported that 12 wk of resistance training in
humans upregulates MSTN mRNA and protein expres-
sion concomitant with muscle hypertrophy. Kim et al.
(644) reported that MSTN mRNA expression is downre-
gulated 24 h after a single bout of resistance exercise
and 16 wk after resistance training in humans. However,
this pattern is similar in participants classified as hyper-
trophic nonresponders (i.e., participants who did not
experience increases in mean fCSA with training), mod-
erate responders (change in mean fCSA¼11,111 lm2 on
average), or extreme responders (change in mean
fCSA ¼ 12,475 lm2 on average). More strikingly, mus-
cle tissue concentrations of the active MSTN peptide
were reported to increase by 44%, and, again, this pat-
tern is evident across responder cohorts. Mobley et al.
(493) reported that MSTN mRNA is not altered in lower,
moderate, and higher hypertrophic responders after
12 wk of resistance training despite serum MSTN

FIGURE 10. Summary of myostatin signaling and how mechanical overload affects signaling outcomes. This schematic (constructed with BioRender.
com, with permission) provides a summary of myostatin (MSTN) signaling in skeletal muscle and how mechanical overload in rodents or humans affects
signaling outcomes based on the research cited in-text. Upon ligand binding, MSTN leads to the phosphorylation of SMAD2/3, which causes the forma-
tion of the SMAD2/3/4 complex. This complex can then enter nuclei and affect the expression of genes that negatively impact muscle size and growth
(i.e., genomic effects). A putative nongenomic effect of MSTN signaling includes the inhibition of AKT phosphorylation, and this can lead to diminished
protein synthesis rates. Notably, blue arrows and inhibitor indicators illustrate how resistance exercise affects aspects of MSTN signaling. As discussed
in main text, acute and/or chronic resistance training has been documented to upregulate myostatin inhibitors (follistatin and FSTL3), reduce SMAD2/3/
4 nuclear translocation through JNK1/2 activation, and reduce MSTN mRNA levels through decreasing transcription rates.
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concentrations equally decreasing across responder
cohorts. Data from certain rodent studies have not
yielded consistent results, either. Minderis et al. (645)
reported that Berlin high (BEH) mice, which are homozy-
gous for a mutation causing a dysfunction in Mstn,
present larger muscle masses versus wild-type mice.
However, these authors also reported that soleus mass
increases in response to synergist ablation are paradoxi-
cally impaired in the BEH line. Aoki et al. (646) reported
that muscleMstnmRNA rapidly increases in response to
stretch overload in rats, and MacKenzie et al. (647)
reported that hindlimb stimulations in rats result in a
rapid postbout increase in muscle Mstn mRNA. Eight
weeks of ladder climbing has been shown to elicit simi-
lar increases in flexor hallucis longus muscle masses
and fCSA value in rats treated with either a placebo or
SB431542, a myostatin inhibitor (648).
Most of the data support that MSTN mRNA is downre-

gulated in skeletal muscle during periods of mechanical
overload in rodents and humans, and some human stud-
ies suggest that a similar response occurs with circulat-
ing MSTN concentrations. There are also various animal
models that suggest that Mstn gene mutations affect
muscular phenotype, and pharmacological studies in
rodents indicate that anabolic signaling is enhanced in
skeletal muscle with MSTN inhibition. However, whether
a downregulation in MSTN gene expression is needed
for load-induced skeletal muscle hypertrophy requires
further investigation given the conflicting data discussed
here. Moreover, although a plethora of human MSTN
mRNA data exist, more human resistance training stud-
ies are needed to determine how MSTN protein levels,
the protein levels of endogenous MSTN inhibitors (e.g.,
FST and FSTL3), and SMAD signaling are affected, and
whether these outcomes are predictive of hypertrophic
outcomes.

4.2.5. Extracellular matrix remodeling.

The extracellular matrix has long been recognized as
more than a cellular scaffold. Skeletal muscle extracellu-
lar matrix components participate in a vast array of mo-
lecular processes (649, 650), from acting as a growth
factor reservoir to orchestrating fundamental cell behav-
ior in response to loading and injury (651, 652). Given
that myofibers are encapsulated by the extracellular ma-
trix, and fCSA increases occur in response to mechanical
overload, extracellular matrix adaptations likely coincide
with myofiber hypertrophy. In support of this theory, a
1995 review by Millward (653) presented a “bag theory”
for intramyofiber protein accretion whereby the extracel-
lular matrix of myofibers acts like a bag and, when filled,
the “bag enlargement” (i.e., the extracellular matrix
remodeling) is needed for myofiber growth to continue.

Several lines of rodent evidence support the idea that
extracellular matrix adaptations occur during periods of
mechanical overload. For instance, work by the Peterson
laboratory (541, 544) supports a fusion-independent role
of satellite cells during hypertrophy involving an exosome-
mediated downregulation in collagen-related genes in
fibroblasts. Mendias et al. (654) reported that the concen-
trations of a collagen cross-link marker (pyridinoline)
increase and concentrations of a collagen structural stabil-
ity marker (hydroxyproline) decrease in skeletal muscle 3,
7, and 28 days after synergist ablation in rats. Several
mRNAs for collagen proteins and matrix metalloproteases
(MMPs) were also reported to be higher at one or multiple
postsurgical time points. Other rodent synergist ablation
studies (414, 485, 654, 655) provide further evidence that
extracellular matrix adaptations occur in skeletal muscle
subjected to mechanical overload. Likewise, a recent
review by Brightwell et al. (48) discusses mouse data
showing that several collagen-related mRNAs are upregu-
lated 3–15 days after mechanical overload and collagen I-
expressing cells increase in abundance 4–7 days after
mechanical overload (541).
Studies in humans also support the notion that extrac-

ellular matrix remodeling, via increases in collagen syn-
thesis rates or increased gene/protein expression of
extracellular matrix genes (241, 531, 656–659), occurs in
response to one bout or weeks of resistance training. A
recent study by the Peterson laboratory sought to exten-
sively examine how resistance training mechanistically
affects extracellular matrix remodeling mechanisms. In
this study, Peck et al. (660) reported that several mRNAs
associated with extracellular matrix remodeling are up-
regulated after 14 wk of resistance training in older
adults. These authors also performed elegant in vitro
experiments to show that electrically stimulated myo-
tubes secrete leukemia inhibitory factor (LIF) to stimulate
the production and secretion of MMP-14 from resident
macrophages. Moreover, bone-derived macrophages in
vitro treated with media isolated from electrically stimu-
lated myotubes increased type I collagen degradation,
which is abrogated with an anti-LIF neutralizing anti-
body. Given that others have reported that resident
macrophages are needed for mechanical overload-
induced hypertrophy (661), the data by Peck and col-
leagues suggest that resident macrophages promote
skeletal muscle hypertrophy, in part, through the secre-
tion of MMPs and extracellular matrix remodeling. It
should be noted, however, that although the total con-
tent of extracellular matrix components likely increases
with skeletal muscle hypertrophy via remodeling mecha-
nisms, the relative content is likely not disproportionally
altered. In this regard, MacDougall et al. (67) used tri-
chrome staining to show that the proportion of connec-
tive tissue is similar (�13% of imaged tissue) in the
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biceps brachii muscle of bodybuilders and nontrained
control subjects despite bodybuilders demonstrating
greater fCSA values. These data were expanded upon by
a recent study performed by the Roberts laboratory (73)
indicating that 10 wk of resistance training in 38 younger
adult men does not affect VL muscle fascial thickness,
protein and histology markers of extracellular matrix con-
tent, tissue MMP activity, or the protein expression of
MMP-2/9 with concomitant VL hypertrophy.
When considering the collective evidence, it seems

plausible that mechanical overload initially enhances
collagen protein turnover and reduces collagen content
to allow for myofiber hypertrophy, and this may occur
days after the initial stimulus in rodents or days to weeks
into a resistance training program in humans. These
events may be promoted, in part, by stromal cells in the
extracellular matrix secreting factors (e.g., exosomes
from satellite cells) that inhibit the expression of collagen
genes from fibroblasts and myofibers and other factors
that stimulate collagen breakdown (e.g., MMP14 from
macrophages). However, after myofiber and tissue
growth, the extracellular matrix may favor collagen
synthesis over breakdown to establish a strengthened
scaffold. Although data supporting this hypothesis are
limited, this notion is partially supported by transcrip-
tome-wide investigations showing that skeletal mus-
cle extracellular matrix-related mRNAs are more
dynamically altered in the earlier (rather than later)
phases of resistance training (243, 662).
Finally, it is becoming more evident that excessive

fibrotic tissue deposition and disorganized collagen ori-
entation in the extracellular matrix can constrain myofiber
growth and impair hypertrophic outcomes, respectively.
Regarding the former, Fry et al. (541) utilized the genetic
Pax7-DTA mouse model to demonstrate that satellite cell
depletion before 8 wk of synergist ablation substantially
increases extracellular matrix collagen deposition and
impairs myofiber hypertrophy. Long et al. (663) more
recently reported that pretraining collagen characteristics
(e.g., total content and packing density) are negatively
associated with hypertrophic outcomes in older partici-
pants who performed 14 wk of resistance training. These
data, along with the data provided by Peck and col-
leagues in an older population (660), raise an intriguing
possibility that extracellular matrix adaptations in older
adults becomes more critical in promoting myofiber
hypertrophy.

4.2.6. Involvement of angiogenesis in mechanical
overload-induced skeletal muscle
hypertrophy.

Angiogenesis, or the formation of new capillaries, is
seemingly critical for mechanical overload-induced

skeletal muscle hypertrophy to occur. Synergist ablation
studies in rodents indicate that angiogenesis occurs in
skeletal muscle in response to mechanical overload
(664–666), and Degens et al. (667) reported that planta-
ris hypertrophy (induced via denervation of synergist
muscles) is accompanied by an increase in the capillary-
to-myofiber ratio. Vascular endothelial growth factor
(VEGF) promotes angiogenesis (668), and plantaris
hypertrophy has been reported to be impaired in skele-
tal muscle-specific Vegf-knockout mice because of a
reduction in the capillary-to-myofiber ratio (669). A
recent report by Ato et al. (670) demonstrated that Heyl-
knockout mice, which show a blunted hypertrophic
response to synergist ablation (671), also present
impairments in mechanical overload-induced angio-
genesis. In humans, VEGF has been reported to be
upregulated in skeletal muscle at the mRNA and pro-
tein levels 2 and 4 h after a resistance exercise bout
(672). Longer-term resistance training studies have
also indicated that increased muscle capillarization
occurs (673–676). Studies in older adults have indicated
that lower pretraining muscle capillary density is associ-
ated with limited hypertrophic outcomes (663, 677, 678),
and a 12-yr longitudinal study in older men indicates that
a reduction in capillary number per fiber accompanies leg
extensor muscle atrophy (679). Nederveen et al. (680)
reported that satellite cells reside near capillaries
in younger men, and the capillary-to-fiber perimeter
exchange index is associated with the satellite cell prolif-
eration response 24 h after an eccentric exercise bout.
Thomas et al. (77) recently examined how 6 wk of unilat-
eral leg aerobic training affected subsequent 10-wk resist-
ance training outcomes in both legs. These authors
reported that aerobic training increased type I and type II
myofiber capillary number and augmented subsequent
resistance training-induced increases in fCSA and satel-
lite cell abundance. Collectively, these studies support a
model in which angiogenesis during mechanical overload
affects satellite cell dynamics to potentially enhance skel-
etal muscle hypertrophy. Furthermore, the age-related
loss in muscle capillaries seemingly reduces muscle plas-
ticity to loading paradigms and may be an involved mech-
anism with muscle atrophy.
Pericytes, or mural cells that encapsulate and support

the microvasculature and exist in the extracellular ma-
trix, have also received attention as a cell type that
adapts to mechanical overload. Dvoretskiy et al. (681)
recently demonstrated that muscle-resident pericytes
upregulate genes associated with angiogenesis and
extracellular matrix remodeling following an acute bout
of resistance exercise in mice. Additionally, pericyte
transplantation in combination with exercise training
resulted in significant enhancements in the capillary-to-
myofiber ratio and collagen turnover. Interestingly, the
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Boppart laboratory (682) recently reported that pericyte
transplantation in mice recovered fCSA losses and the
capillary-to-fiber ratio after 14 days of hindlimb immobiliza-
tion and remobilization. These findings suggest that peri-
cytes function to promote angiogenesis and, in agreement
with the literature cited above, suggest that enhanced
capillarization promoted the hypertrophy observed during
reloading. In agreement with such a mechanism, Hansen-
Smith et al. (665) reported that synergist ablation in rats
promoted angiogenesis, an increase in pericyte abun-
dance, and muscle hypertrophy.
Collectively, a large body of evidence suggests that

angiogenesis is needed to optimize skeletal muscle hy-
pertrophy induced by mechanical loading. As this is a con-
sistently researched area, more research will undoubtedly
examine the stromal cells and signaling mechanisms
involved with this process.

4.2.7. Alterations in muscle-specific and
circulating microRNAs.

MicroRNAs (miRNAs) are �20 nucleotides in length, are
noncoding, and act to inhibit the translation of mRNAs in
a sequence-specific fashion via the miRNA-induced
silencing complex (miRISC) (683, 684). In 1993, Lee et al.
(685) reported that Caenorhabditis elegans express a
miRNA (lin-4) during postembryonic development to
negatively regulate the LIN-14 protein. Since this founda-
tional discovery, there has been widespread research
interest into how miRNA profiles are altered in different
tissues during diseased states (686, 687). Alterations in
skeletal muscle miRNAs to exercise training have also
received considerable attention, and several reviews
have been written on the topic (44, 688–691). Various
reports have detailed the skeletal muscle miRNA
responses to mechanical overload in rodents and
humans. McCarthy and Esser (692) reported that 7
days of mechanical overload induced by synergist
ablation increased plantaris mass by 45% while reduc-
ing muscle-enriched miR-1 and miR-133a levels by
�50%. Several human studies have since provided
miRNA targets that are altered acutely or after chronic
training interventions (239, 248, 693–696), and recent
in vitro and rodent evidence suggests that miR-16 is
lower in mechanically overloaded muscle and that this
may lead to the derepression of genes involved in
myoblast differentiation and ribosome biogenesis
(697).
Although these data have been informative, a 2019

study by Vechetti et al. (698) tempers enthusiasm in this
area. To determine the role of microRNAs in muscle hy-
pertrophy, the authors generated a skeletal muscle-spe-
cific Dicer knockout to globally deplete skeletal muscle
miRNAs; notably, Dicer is responsible for producing

mature miRNAs from pre-miRNAs (683). Despite an 80%
knockdown of Dicer expression, miRNAs levels were
only reduced by �50% and do not appear to affect me-
chanical overload-induced skeletal muscle hypertrophy,
atrophy induced by hindlimb unloading, or age-related
muscle loss. In agreement with this finding, Oikawa et al.
(699) found that Dicer inactivation only reduced myomiR
levels by 30–50% in this same genetic mouse model
and did not affect endurance exercise adaptations fol-
lowing 2 wk of voluntary wheel running. Although
these studies suggest that the regulation of skeletal
muscle miRNA levels is maintained through a yet-to-
be described Dicer-independent mechanism, they
also question the involvement of miRNAs in mechani-
cal overload-induced skeletal muscle hypertrophy
and endurance training adaptations, respectively.

4.2.8. Involvement of sex hormone signaling.

Androgens, which include testosterone and its metab-
olites, exert downstream effects on skeletal muscle
through binding to androgen receptors localized in
the sarcoplasm (700). Upon activation through ligand
binding, androgen receptors undergo nuclear translo-
cation and act as transcription factors to alter the
mRNA expression of hundreds to thousands of genes
(701). The administration of supraphysiological levels
of anabolic steroids promotes appreciable skeletal
muscle hypertrophy in males (702–707) and females
(532, 708). Human and rodent studies imply that these
effects are due to satellite cell-mediated myonuclear
accretion (703, 709), enhanced mTORC1 signaling
(presumably through noncanonical androgen signal-
ing) (710), increased ribosome biogenesis (711), and
heightened muscle protein synthesis (705, 712–714).
However, a more recent study has shown that Pax7-
DTA mice depleted of satellite cells experience a simi-
lar magnitude of skeletal muscle hypertrophy relative
to control mice with testosterone administration (715),
thus implying that satellite cells may not be needed
for androgens to elicit anabolic effects. It has also
been demonstrated that male androgen receptor
knockout (ARKO) mice, but not female ARKO mice, ex-
hibit impairments in muscle mass during adulthood
(716), and similar data have been reported in male muscle-
specific ARKO mice (717). Male muscle-specific ARKO
mice have also been shown to exhibit impairments in
plantaris hypertrophy after 28 days of synergist ablation
versus wild-type mice (154% vs. 1115%) (718). The phar-
macological blockade of the androgen receptor has been
shown to slightly (albeit significantly) impair skeletal mus-
cle growth in the gastrocnemius muscle of male rats that
underwent 2 wk of hindlimb stimulation (719). Likewise,
Yin et al. (720) reported that androgen receptor blockade
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via flutamide prevents gastrocnemius hypertrophy in male
rats that underwent 3 wk of ladder climbing. In men, lon-
ger-term testosterone suppression with a gonadotropin-
releasing hormone analog has been shown to impair re-
sistance training-induced skeletal muscle hypertrophy
(713). Hence, there is a robust body of evidence to suggest
that androgen signaling is involved with skeletal mus-
cle hypertrophy, albeit it is notable that most of these
data are prominently derived from testosterone admin-
istration studies or the blockade of androgen secretion
and/or signaling.
Although the data above link androgen signaling to

skeletal muscle hypertrophy, it is still unclear how andro-
gen signaling under physiological circumstances affects
this process. The necessity of circulating hormones in
mechanical overload-induced hypertrophy was origi-
nally challenged by Goldberg who, as stated above, indi-
cated that their role is minor in driving synergist
ablation-induced hypertrophy in hypophysectomized
rats (i.e., removal of the pituitary gland) (127). A series of
studies published in the 1990s and 2000s suggested
that transient elevations in circulating anabolic hor-
mones [testosterone, growth hormone (GH), and IGF1]
following bouts of resistance exercise are significant
contributors to hypertrophic adaptations (721–726).
However, several human studies have since indicated
that the postexercise endocrine responses to bouts of
resistance exercise do not correlate with transient ana-
bolic signaling or long-term hypertrophic outcomes
(727–731). Moreover, although there is limited evidence
to suggest that androgen receptor protein content in
skeletal muscle is associated with hypertrophic out-
comes (732, 733), the most practical evidence against
skeletal muscle androgen receptor signaling being a
significant contributor to overload-induced hypertrophy
comes from a comprehensive meta-analysis by Roberts
et al. (734). These authors reported 12 hypertrophy out-
comes from numerous resistance training studies involv-
ing male and female participants that spanned from 7 to
24 wk in duration (166, 735–742). The pooled effect size
favoring relative (or body mass corrected) hypertrophy
in males is small and not statistically significant (effect
size: 0.07, P ¼ 0.31). In explaining their findings, the
authors rejected the notion that low circulating andro-
gen levels, and presumably lower androgen signaling in
skeletal muscle, are barriers to skeletal muscle hypertro-
phy in females.
Although some studies have examined the relation-

ship between muscle androgen receptor protein con-
tent and hypertrophic outcomes, no study to date has
extensively investigated canonical androgen receptor
signaling events that occur with different loading para-
digms. Assessing mTORC1 signaling in muscle tissue is
straightforward given that there are relatively well-

defined downstream targets that can be assayed for
phosphorylation status. However, assessing whether ca-
nonical androgen receptor signaling is altered with me-
chanical overload is inherently more difficult given that
nuclear lysates must be obtained from muscle tissue,
the interaction of the androgen receptor to consensus
DNA binding elements should be assessed, and tran-
scriptional targets should be assayed. Given that the
androgen receptor affects the mRNA expression of doz-
ens to hundreds of genes, these collective endeavors
can be cumbersome. Even if these assays are per-
formed, extensive genetic screening would be needed
to determine which androgen-sensitive mRNAs affected
by mechanical overload promote skeletal muscle hyper-
trophy. Cardaci et al. (743) reported that androgen re-
ceptor DNA binding affinity is enhanced 3 h after a
resistance exercise bout in men. Hence, replicating this
approach with human time course resistance training
studies and more downstream analyses may yield
insightful information as to whether alterations in andro-
gen receptor DNA binding affinity, as well as changes in
nuclear androgen receptor concentrations and down-
stream mRNAs, correlate with hypertrophic outcomes.
The transgenic androgen response element luciferase
(ARE-Luc) mouse would also be an excellent model to uti-
lize to further enhance our knowledge in this area (744).
Specifically, this mousemodel allows researchers to mon-
itor androgen receptor DNA binding, and time course me-
chanical overload studies that examine muscle luciferase
activity could yield insightful associations between andro-
gen DNA binding activity and hypertrophy. Given these
knowledge gaps and conflicting data in this area, more
research is needed to determine the degree to which
enhanced androgen signaling during periods of mechani-
cal overload contributes to skeletal muscle hypertrophy.
As with testosterone, female sex hormones such as

estrogen and progesterone operate through canonical
nuclear receptor DNA binding and noncanonical protein
kinase signaling (32). However, unlike exogenous tes-
tosterone administration, oral contraceptives (which
consist of estrogens and/or progestins) have no
meaningful impact on muscle hypertrophy in younger
female participants who resistance train (512, 745–
749). Furthermore, there is evidence to suggest that
estrogen replacement in older women diminishes the
myofibrillar protein synthesis response to a resistance
exercise bout (750), and a recent meta-analysis by
Javed et al. (751) indicated that estrogen-progester-
one or estrogen-only replacement therapy does not
prevent muscle mass loss with aging in women over
the age of 50 yr. Hence, most evidence to date sug-
gests that factors aside from sex hormone signaling
are response for mechanical overload-induced skele-
tal muscle hypertrophy in females.
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4.2.9. Involvement of inflammation via
prostaglandin signaling.

Prostaglandins are lipid mediators formed through a
multicatalytic reaction involving cyclooxygenase 1/2
(COX-1/2) enzymes and cell-specific prostaglandin syn-
thases (752). Rodemann and Goldberg (753) were the
first to report that prostaglandin F2a (PGF2a) increases
protein synthesis in isolated rat hindlimb muscles. Two
decades later, Trappe et al. (754) demonstrated in
humans that 1,200mg of ibuprofen, which inhibits the
COX enzymes and blunts PGF2a levels in skeletal mus-
cle (755), prevents increases in muscle protein synthesis
during a 24-h period following a high-volume eccentric
resistance exercise bout. PGF2a operates through the G
protein-coupled prostanoid FP receptor to stimulate
mTORC1 signaling in myotubes in vitro (756). There are
also four known E-prostanoid (EP) receptors (EP1, EP2,
EP3, and EP4), and EP4 may be especially relevant for
skeletal muscle hypertrophy (237, 757, 758). Ho et al.
(759) reported that prostaglandin E2 (PGE2) stimulates
satellite cell proliferation through the EP4 receptor and
that the genetic ablation of satellite cell EP4 receptor in
mice impairs muscle repair after various forms of injury.
These authors additionally reported that the acute
administration of PGE2 after muscle injury improves the
morphology and function of muscle tissue. Hence, there
are multiple lines of evidence indicating that prostaglan-
dins likely contribute to anabolic signaling events in
skeletal muscle.
Studies that have inhibited prostaglandin synthesis

during periods of mechanical overload have yielded in-
triguing results. For instance, daily ibuprofen administra-
tion reduces plantaris hypertrophy in rats by �50% after
synergist ablation (760), and the daily administration of a
COX-2-specific inhibitor in mice almost completely abro-
gates plantaris hypertrophy and muscle protein accre-
tion 14 days after synergist ablation (761). In younger
adults, Markworth et al. (762) reported that higher-dose
ibuprofen administration (1,200 mg/day) blunts certain
aspects of MAPK and mTORC1 signaling 3 and 24 h after
a single resistance exercise bout, and others have
reported that 1,200mg/day of ibuprofen blunts increases
in leg muscle volume by �50% after 8 wk of resistance
training compared to a group receiving 75 mg/day of ace-
tylsalicylic acid (763). COX inhibition via ibuprofen infu-
sion into muscle during and hours after an eccentric
training bout prevents satellite cell proliferation 8 days af-
ter exercise (764). COX-2 inhibition in mice also prevents
stromal cell proliferation up to 14 days after synergist abla-
tion (761), and Mackey and colleagues (765) have
reported similar findings in humans after a 36-km run.
Peterson and Fyfe (28) authored a recent review citing
multiple studies that examined the efficacy of cold-water

immersion (CWI) as a means to potentially enhance re-
covery aspects during resistance training. Notably, this
practice is popular in the athletic sphere given that certain
lines of research indicate that CWI reduces postexercise
soreness and promotes a more rapid restoration of mus-
cle strength after rigorous exercise (766). However, lim-
ited research in this area indicates that CWI blunts certain
aspects of mTORC1 signaling and satellite cell prolifera-
tion (767, 768). Although not explicitly stated, the potential
contributions of reduced prostaglandin signaling cannot
be discounted, given that cryotherapy has been shown to
reduce tissue prostaglandins in other models of inflam-
mation (769, 770). Hence, a reduction in exercise-induced
inflammation via anti-inflammatory drugs or CWI may
interfere with muscle repair or remodeling, and mecha-
nisms that promote skeletal muscle hypertrophy may be
subsequently impaired.
Like several mechanisms discussed in this review,

there are also incongruent data in this area. Mikkelsen
et al. (659) reported that indomethacin (a COX inhibitor)
infusion into muscle during and after a resistance exer-
cise bout did not affect myofibrillar or collagen protein
synthesis rates during the 24–28 h postexercise period.
Krentz et al. (771) reported that lower-dose ibuprofen
administration (400 mg/day) in younger adults did not
affect increases in biceps muscle thickness following 6
wk of resistance training, and Candow et al. (772)
reported similar findings in postmenopausal women who
consumed 400 mg/day of ibuprofen over a 9-week pe-
riod. Lilja et al. (480) reported that higher-dose ibuprofen
administration (1,200 mg/day) did not impair acute or
chronic hypertrophy mechanisms (i.e., mTOR signaling,
ribosome biogenesis, satellite cell content, myonuclear
accretion, and muscle capillarization) in younger adults
who partook in 8 wk of resistance training. Trappe et al.
(773) reported that higher-dose ibuprofen administration
(1,200 mg/day) enhanced hypertrophic outcomes in older
participants, which contrasts with the data discussed
above in younger participants indicating that higher-dose
ibuprofen administration either does not affect or inhibits
the hypertrophic response to resistance training. Damas
and colleagues (310, 774) conducted a series of studies
with an experimental design to test the relationship
between changes in muscle damage and inflammation,
myofibrillar protein synthesis, and muscle hypertrophy in
previously untrained participants. Correlational analysis
revealed that a greater magnitude of muscle damage
and inflammation after the first four resistance exercise
bouts does not confer a significantly greater hypertrophic
response to 10 wk of resistance training. In addition, myo-
fibrillar protein synthesis does not significantly correlate
with muscle hypertrophy when damage and inflammation
are highest (i.e., in response to the first resistance exer-
cise session). After a progressive attenuation of muscle
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damage and inflammation throughout resistance training,
however, myofibrillar protein synthesis is strongly corre-
lated with muscle hypertrophy induced by 10 wk of resist-
ance training (r ¼ �0.90). As an interesting aside, Damas
et al. (243) utilized a microarray approach to report that
mRNAs related to inflammation and proteolysis are up-
regulated after the first bout of resistance exercise.
However, a subsequent bout that occurred after 10 wk of
resistance training in these same participants resulted in
an upregulation in mRNAs related to muscle structure
and contractile function, suggesting that increased train-
ing status results in a refined transcriptomic response.
Several lines of evidence published to date suggest

that prostaglandin signaling in skeletal muscle is ele-
vated in response to mechanical overload. Additionally,
the human studies discussed in this section indicate that
a greater reduction in prostaglandin synthesis occurs
with higher doses of nonsteroidal anti-inflammatory
drugs (1,200 mg/day), and this may partially abrogate re-
sistance training-induced skeletal muscle hypertrophy
compared with lower doses (i.e., 400 mg/day). However,
findings are mixed and seemingly age dependent.
Moreover, the necessity of inflammation, in general, for
skeletal muscle hypertrophy to occur is confounded by
the lack of associations discussed above by Damas and
colleagues. Thus, more time course studies are needed
to further elucidate the relevance of mechanical over-
load-induced inflammation in the hypertrophic process.

4.2.10. Involvement of b-adrenergic signaling in
myofibers.

b2-Adrenergic receptor signaling operates through a ca-
nonical signaling pathway that involves 1) ligand (cate-
cholamine) binding to the G-coupled protein receptor, 2)
the intracellular activation of adenylyl cyclase, 3) the pro-
duction of cyclic adenosine monophosphate (cAMP),
and 4) the activation of protein kinases (e.g., protein ki-
nase A, or PKA) (775). Active PKA phosphorylates and
activates the cAMP response element binding protein
(CREB) transcription factor (50). Several studies have
shown that the administration of b-adrenergic receptor
agonists to animals enhances skeletal muscle hypertro-
phy (776–786), which occurs independently of mechani-
cal overload. Hinkle et al. (787) also reported that
administration of the b-adrenergic receptor agonist clen-
buterol to mice lacking b1-adrenergic receptors enhan-
ces skeletal muscle hypertrophy, whereas mice lacking
b1/2-adrenergic receptors did not show this response.
Woodall et al. (788) used genetic mouse models to
determine that clenbuterol enhances muscle Akt activ-
ity, and transgenic mice conditionally overexpressing
CREB-regulated transcriptional coregulators (Crtc) show
a hypertrophic phenotype (789). Jessen et al. (790)

reported that clenbuterol transiently upregulates skele-
tal muscle mTORC1 signaling markers in humans, and
these researchers also reported that the selective b2-
agonist salbutamol augments type II myofiber hypertro-
phy in college-aged men after 11 wk of resistance train-
ing (791). These studies, and others reporting similar
findings (792), indicate that b2-adrenergic signaling can
enhance mTORC1 activity in skeletal muscle. However,
the administration of salbutamol (a short-acting b2-adre-
nergic receptor agonist) has been shown to concomi-
tantly enhance the phosphorylation of CREB, AKT2, and
the myofibrillar protein synthetic response to a single
bout of resistance exercise in humans without affect-
ing mTORC1 signaling markers (464).Thus, along with
activating mTORC1 signaling, b2-adrenergic signaling
seemingly stimulates skeletal muscle hypertrophy in
an mTORC1-independent manner.
Select reviews such as those by Glass (793), Schiaffino

et al. (10), and Sartori et al. (9) have highlighted the role
that b2-adrenergic receptor signaling may have in pro-
moting skeletal muscle hypertrophy. However, although
research on this topic blossomed in the 1980s, it is per-
plexing that this area of the hypertrophy literature has
been largely overlooked in recent years. Several recent
hypertrophy reviews have prioritized the involvement of
mTORC1 signaling, satellite cells, and ribosome biogene-
sis over b2-adrenergic signaling, which also reflects the
low number of original articles on this mechanism in
recent years. Although reasons as to why diminished in-
terest in this area has occurred are difficult to posit, we
speculate that certain discoveries in the field provide
plausible explanations. First, clenbuterol administration
was largely researched as a pharmacological means to
increase meat yields in livestock, and this approach was
abandoned shortly after food poisoning outbreaks in
Europe linked to clenbuterol accumulation in bovine liver
and meat products (794–796). Additionally, findings from
the Bodine laboratory (797) indicating that mTOR inhibi-
tion in mice that were administered clenbuterol blunts,
but does not completely abrogate, the hypertrophic
effects of overload likely dampened enthusiasm in this
area. The authors rightfully concluded that the anabolic
effects of clenbuterol are mediated, in large part, through
the activation of the mTOR signaling pathway. However,
the authors also reported that canonical b2-adrenergic
signaling might reduce atrophic signaling in an mTOR-in-
dependent manner. Indeed, more recent human findings
by Jessen and colleagues (790, 791) indicating that b2-
adrenergic agonists operate in an mTORC1-independent
manner to enhance the protein synthesis response to re-
sistance exercise are provocative, and these studies may
instigate future research in this area.
Although the evidence regarding the anabolic effects

of pharmacological b2-adrenergic agonists has been
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informative, virtually no data exist on the potential ana-
bolic effects of endogenous catecholamines during peri-
ods of mechanical overload. Several studies have
shown that circulating epinephrine concentrations tran-
siently increase during and after resistance exercise
bouts (798–801), and epinephrine is a well-known b2-
adrenergic receptor ligand (49, 802). Moreover, one
report indicates that b2-adrenergic receptor blockade
via propranolol does not affect strength outcomes fol-
lowing strength training interventions (789). However,
mechanistic studies seeking to determine whether inhib-
iting b2-adrenergic receptor signaling during periods of
mechanical overload affects anabolic signaling and/or
skeletal muscle hypertrophy are lacking, and performing
such studies will provide much needed insight in this
area.

4.2.11. Involvement of angiotensin II signaling.

Research interest in angiotensin II signaling and hy-
pertrophy was initially rooted in cardiac hypertrophy
research (803–805). These findings motivated the
Booth laboratory to investigate the role of angiotensin
II signaling in skeletal muscle hypertrophy. Gordon et
al. (806) reported that the pharmacological blockade
of angiotensin II signaling through the angiotensin II
type 1 (AT1) receptor reduced overload-induced hind-
limb hypertrophy in rats 28 days after synergist abla-
tion. Subsequent studies have demonstrated similar
phenomena such as that the inhibition of angiotensin
II production with an angiotensin-converting enzyme
(ACE) inhibitor blunts the satellite cell proliferation
response to synergist ablation in rat soleus muscles
(807) and AT1 receptor blockade through losartan pre-
vented skeletal muscle hypertrophy in rats following 4
wk of eccentric training (808). Notwithstanding, fol-
low-up research in this area has been relatively sparse
and conflicting. For instance, Zempo et al. (809) para-
doxically reported that AT1 receptor global-knockout
mice exhibited a similar magnitude of skeletal muscle
hypertrophy relative to wild-type mice in response to
14 days of synergist ablation. Heisterberg et al. (810)
reported that losartan administration did not affect
various hypertrophy indexes after 4 mo of resistance
training in older men. Another study by this group indi-
cated that losartan generally did not affect the acute
satellite cell or mRNA expression responses to one
bout of exercise (811). Additionally, mouse studies sug-
gest that heightened circulating angiotensin induces
muscle atrophy through the hepatic production of
proinflammatory mediators, which in turn leads to
chronic elevations in muscle proteolysis (812). Hence,
this collective evidence suggests that angiotensin II
signaling through the AT1 receptor in skeletal muscle

may coincide with overload-induced hypertrophy, albeit
the conflicting evidence makes it difficult to conclude
whether this hormonal mechanism exerts an appreciable
role in the process.

4.3. Emerging Mechanisms That May Be Involved
with Skeletal Muscle Hypertrophy

4.3.1. Mitochondrial biogenesis.

In vitro microbial research suggests that energy har-
nessed from the catabolism of four ATP molecules is
required per peptide bond synthesized (813). Muscle
proteolysis also requires ATP (583). Thus, although no
formal estimates have been made, the bioenergetic
requirement to support enhanced myofiber protein turn-
over and subsequent protein accretion during periods
of resistance training, where mean fCSA values can
increase �15–30% in size on average (814), is appreci-
able. Indeed, the dysregulation of mitochondrial biogen-
esis and function leads to muscle loss. For instance,
mice expressing a proofreading-deficient version of
mtDNA polymerase gamma (PolG) show heightened mi-
tochondrial fission and autophagy levels that coincide
with muscle atrophy (815, 816). Moreover, mice overex-
pressing the transcriptional coactivator peroxisome prolif-
erator-activated receptor c coactivator-1a (PGC-1a), which
is a key regulator of mitochondrial biogenesis (817), show
a reduction in muscle atrophy induced by denervation,
fasting, and hindlimb unloading (818, 819). Conversely,
muscle-specific PGC-1a-knockout mice have been
reported to show modest impairments in mechanical
overload-induced plantaris hypertrophy after 14 days of
synergist ablation (820). Uemichi et al. (466) demon-
strated that 14 days of synergist ablation increased plan-
taris markers of mitochondrial remodeling to presumably
enhance mitochondrial expansion and function. The
investigators also used TEM to demonstrate that the area
in myofibers occupied by mitochondria increased
approximately fivefold after synergist ablation despite
plantaris muscle mass only increasing approximately
twofold. Thus, these several independent observations
in rodents suggest that a critical mass of normally func-
tioning mitochondria is needed within myofibers to
maintain muscle mass and an expansion of the mito-
chondria may be needed to optimize load-induced
skeletal muscle hypertrophy.
Although resistance training affects mitochondrial

markers in humans, the data are mixed and this may be
due to differences in training paradigms as well as differ-
ent methodologies used to detect these markers. Costill
et al. (152) were the first to report that resistance training
increases mitochondrial enzyme activity markers, albeit
this was reported to occur with higher-volume training.
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Groennebaek and Vissing (821) authored a review
including 16 human studies examining how chronic re-
sistance training affected mitochondrial volume density
and function. It should be noted that several studies
cited in the review assayed muscle tissue CS activity as
a surrogate of mitochondrial volume density given the
findings of Larsen et al. (822) indicating that this met-
ric exhibits a strong correlation with myofiber mito-
chondrial content as assessed through TEM imaging
(r value¼0.84, P < 0.05). Additionally, older studies
mentioned in the Groennebaek and Vissing review
used TEM to assess the percentage of intramyofiber
space occupied by mitochondria. Only two of the
cited studies in the Groennebaek and Vissing review
(195, 823) reported increases in mitochondrial volume
density after 12 wk of resistance training, whereas the
other 14 studies reported no changes or decreases.
Three of the five studies that assessed markers of mi-
tochondrial function (e.g., a tighter coupling of oxida-
tive phosphorylation) reported improvements (824–
826). These data, along with other studies (263, 827),
motivated Parry, Roberts, and Kavazis (45) to author a
review in 2020 positing that myofiber hypertrophy
during resistance training may occur more rapidly
than the expansion of the mitochondrial reticulum.
However, subsequent findings by Ruple et al. (55) in
college-aged males who partook in 10 wk of resist-
ance training challenged this notion. In short, the
investigators reported that mitochondrial volume density,
assessed by immunostaining the outer mitochondrial
TOMM20 protein, increased in type I and II myofibers and
these increases outpaced fCSA increases in both fiber
types. The authors also reported that CS activity values
were not significantly altered with resistance training and
that CS activity change score values exhibit a poor asso-
ciation with changes in type I and II myofiber mitochon-
drial area assessed by TOMM20 immunostaining.
The aforementioned reports have multiple implica-

tions. First, more research is needed to determine the
veracity of using CS activity as a marker to track
changes in mitochondrial volume density with resistance
training. Second, increases in mitochondrial volume
density in humans may precede load-induced increases
in myofiber hypertrophy as observed by Uemichi et al.
(466) in rodents. Pillon et al. (272), who analyzed numer-
ous studies that examined the transcriptomic responses
to resistance exercise, reported that PGC1-a mRNA is
transiently upregulated after single bouts of resistance
exercise. Although these data provide further indirect
support for mitochondrial biogenesis being a response
to resistance training, these microarray investigations
may have captured an upregulation in the PGC-1a4
mRNA variant rather than the common PGC-1a1 variant.
Notably, various studies in humans support that an

upregulation in the PGC-1a4 isoform occurs with resist-
ance training and that this could lead to hypertrophic
signaling (e.g., downregulation in MSTN and upregula-
tion in IGF1) while also upregulating glycolytic (rather
than mitochondrion related) genes (828, 829). As a final
note in this section, an expansion or remodeling of the
mitochondrial reticulum during periods of mechanical
overload may serve nonenergetic roles such as calcium
buffering (and thus refining calcium signaling) (812), and
the mitochondrial propagation of redox signaling may
assist with myotube hypertrophy in vitro (813) and in
rodents (814). Thus, although it appears that mitochon-
dria play various roles in mechanical overload-induced
skeletal muscle hypertrophy, much remains to be deter-
mined in deciphering all these roles.

4.3.2. Other bioenergetic adaptations in
myofibers.

An emerging research theme in muscle biology involves
the necessity of metabolic reprogramming and an
enhanced uptake and utilization of glucose to provide
substrates for myofiber growth during periods of me-
chanical overload. A seminal 1972 paper by Gollnick et
al. (146) supported that weightlifters possessed a lower
percentage of oxidative myofibers versus endurance-
trained and untrained participants. Tesch and col-
leagues (167) indicated that 6 mo of conventional resist-
ance training did not alter muscle enzyme activities
related to the ATP-PCr or glycolytic systems, albeit ear-
lier work by Costill et al. (152) reported that several gly-
colytic enzyme markers were affected with 7 wk of
higher- versus lower-volume resistance training. In
agreement with Costill et al., two proteomic investiga-
tions by the Roberts laboratory indicate that higher-vol-
ume resistance training induces a significant elevation in
glycolytic proteins relative to lower-volume resistance
training (262, 263). Verbrugge et al. (830) reported that
muscle pyruvate kinase 2 (PKM2) is preferentially upreg-
ulated over the PKM1 isoform after 6 wk of resistance
training in humans, and the same group found that the
knockdown of both Pkm1 and Pkm2 blunts myotube hy-
pertrophy in vitro. Valentino et al. (831) used microarrays
to show that mechanical overload in mice activates the
pentose phosphate pathway (PPP) leading to enhanced
NADPH synthesis, and this mechanism was proposed to
be necessary for heightened redox regulation during
the early stage of hypertrophy. Other in vitro evidence
suggests that glycolysis inhibition through 2-deoxy-D-
glucose reduced murine and primary myotube size
by �40% (832), and the Ogasawara laboratory (833)
reported that the inhibition of glycolysis reduces skeletal
muscle mTORC1 signaling in rats following isometric
contractions induced by hindlimb stimulations. Several
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of these findings prompted Wackerhage et al. (834) to
posit that metabolic adaptations accompanying me-
chanical overload-induced myofiber growth parallel met-
abolic reprogramming events that occur in cancer cells;
specifically, both cell types increase the uptake and utili-
zation of glucose for cell growth as posited by Otto
Warburg in the 1920s (835). Others have similarly
hypothesized that glucose and downstream metabolites
are shunted to metabolic pathways in myofibers during
hypertrophic growth to provide macromolecules (e.g.,
nucleotides, amino acids, and lipids) necessary for the
anabolic processes (830, 831, 836). Thus, determining
the roles these metabolic adaptations have in skeletal
muscle hypertrophy represents an exciting new area of
research for the field and will provide a more compre-
hensive description of the metabolism underlying mus-
cle growth.

4.3.3. The muscle circadian clock.

Virtually all cells possess a circadian clock mechanism
that is characterized by a �24-h transcriptional-transla-
tional feedback loop (837). The circadian clock transcrip-
tional program is commonly referred to as clock output,
and this has been characterized in both mouse and
human muscle (838–840). Clock gene expression pat-
terns are similar between nocturnal rodents and diurnal
humans when viewed in the context of rest-active cycle
rather than the light- dark cycle. Beyond the commonal-
ity in core clock genes, comparisons of clock output
have identified >400 common mRNAs that cycle in
human and mouse skeletal muscle. Functional analysis
of the common clock output mRNAs highlights the links
between the circadian clock and substrate metabolism
(e.g., PDK4), transcription factors (e.g., MYOD1), and pro-
teostasis (e.g., TFEB) (841). Studies using genetic mouse
models to disrupt the muscle circadian clock indicate
that metabolism, mitochondrial function, and muscle
function are impaired (842, 843).
Despite evidence demonstrating that clock function

in muscle is critical for homeostasis, it is still unclear
what the role of the muscle clock is in response to re-
sistance exercise. In humans, Zambon and colleagues
(844) provided the first and most extensive investiga-
tion as to how resistance exercise modulates the
expression of circadian-regulated genes in skeletal
muscle. The researchers had participants perform a
session of unilateral leg resistance exercise at 1:30 PM
after 8 days of controlling diet and physical activity.
Muscle biopsies were obtained 6 h and 18 h after resist-
ance exercise in both the exercised and nonexercised
legs. Microarray results revealed that 704 genes and
1,479 genes are differentially expressed at 6 h and 18 h af-
ter the resistance exercise session, respectively. In

addition, 40% of circadian rhythm-related genes are sig-
nificantly altered 6 h after resistance exercise. Three of
the core circadian clock genes (CRY1, PER2, and BMAL1)
as well as the muscle-specific transcription factor
MYOG were reported to also be upregulated 6 h after
resistance exercise in the exercised leg. Other
human data indicate that one bout of resistance exer-
cise affects the muscle mRNA expression of core
clock genes (844). However, the single-bout nature
of these studies has not allowed investigators to
determine whether exercise-induced alterations in
the muscle circadian transcriptome are related to lon-
ger-term hypertrophic outcomes. Furthermore, the
researchers did not vary the time of exercise, which
would have provided stronger evidence that resist-
ance exercise modulates circadian-related mRNA
expression patterns.
It is also worth noting that a meta-analysis by Grgic

and colleagues (845) indicates that the magnitude of
muscle hypertrophy in humans is similar regardless of
the time of day at which the resistance training is con-
ducted. This can be viewed in one of two ways, includ-
ing 1) resistance training induces muscle circadian clock
gene adjustments to better align metabolism and other
cell functions around the training stimulus to better opti-
mize skeletal muscle hypertrophy or 2) although certain
muscle circadian clock genes are responsive to resist-
ance exercise as indicated above, resistance training
has no appreciable influence on the muscle circadian
transcriptome and this is not an involved mechanism in
skeletal muscle hypertrophy. To test these hypotheses
in humans requires the application of randomly timed
exercise bouts throughout training, which is difficult to
execute. Thus, the use of mouse genetic models will
allow for direct testing of the requirement of the clock in
adaptations to mechanical overload. Additionally, there
are very few studies of resistance exercise or models of
muscle hypertrophy that include true circadian design
strategies, and this too warrants further investigation.

4.3.4. Microtubules and myonuclear and RNA
trafficking.

The microtubule network in myofibers serves as an intra-
cellular cytoskeletal scaffold that structurally harnesses
myofibrils and other organelles. Elegant TEM work in the
1980s indicated that microtubules exist in the intermyofi-
brillar space and appear to wrap around myofibrils in a
helical fashion (846). Boudriau et al. (847) subsequently
used immunohistochemistry to show that slow- and fast-
twitch myofibers possess extensive microtubule net-
works surrounding myofibrils and myonuclei.
Until recently, interest in the role myofiber microtu-

bules have in exercise adaptations has been relatively
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subdued. However, three recent studies have detailed
critical roles that microtubules possess in myofibers, and
there are stark implications regarding how the microtu-
bule network may participate in overload-induced skele-
tal muscle hypertrophy. In 2021, Denes et al. (848) used
an ex vivo RNA fluorescence in situ hybridization (FISH)
visualization strategy to show that various mRNAs coloc-
alize with microtubules in adult mouse myofibers, and
this agrees with a 2021 report by Pinheiro et al. (849)
indicating that mRNA distribution away from myonuclei
in myofibers is dependent upon microtubule-mediated
transport. Denes and colleagues also reported that the
pharmacological inhibition of microtubule assembly
leads to an aggregation of RNAs around nuclear enve-
lopes and a robust downregulation in mRNA translation
at the Z disks. These and other findings from this study
led the authors to posit that microtubule-dependent
RNA transport from myonuclei to ribosomes is essential
for properly localizing muscle protein synthesis at the
sarcomeres. The same month, Roman et al. (850) pub-
lished a report demonstrating that the microtubule net-
work transports myonuclei to contraction-induced
muscle injury sites hours after exercise in mice.
Additionally, these investigators performed in vitro
experiments to illustrate that myotubes treated with
compounds that slowed myonuclear migration exhibit a
delay in sarcomere repair following laser-induced dam-
age. On the basis of results from these experiments, the
authors concluded that (contrary to the satellite cell-cen-
tric view of muscle repair) myonuclear migration is likely
critical for the local delivery of mRNAs required for pro-
tein production and repair of damaged sarcomeres tran-
siently following exercise bouts. An excellent review by
Bagley, Denes, Wang, and others (51) discusses the
implications of these papers for interested readers.
As an interesting aside, several investigations in cardio-

myocytes have indicated that microtubule reorganization
coincides with overload-induced cardiac hypertrophy
(851–854), and Scarborough et al. (855) recently reported
that that microtubules are indispensable for cardiac
growth via spatiotemporal control of the translational ma-
chinery. However, no studies have directly sought to
determine how mechanical overload in rodents or
humans affects the expression or spatial orientation of
microtubule proteins (e.g., a-tubulin and b-tubulin) or other
proteins present in the microtubule network in skeletal
muscle (e.g., nuclear lamins and desmin). Interestingly,
a-tubulin is commonly used as a housekeeping protein,
which is widely assumed not to be altered by various exer-
cise stressors. In a 2016 article titled “Housekeeping pro-
teins: how useful are they in skeletal muscle diabetes
studies and muscle hypertrophy models?”, Fortes et al.
(856) reported that a-tubulin and c-tubulin protein levels
more than double in the extensor digitorum longus

muscle of rats after 7 days of synergist ablation. Human
data from the Bamman laboratory indicate that moderate
and higher hypertrophic responders to 16 wk of resistance
training exhibit an upregulation in muscle lysate a-tubulin
protein levels, whereas lower responders do not (238).
Both studies imply that myofiber hypertrophy may rely on
the expansion or reorganization of the microtubule net-
work given its putative role in RNA trafficking, protein syn-
thesis regulation, and myofiber repair. However, this
is highly speculative, and innovative investigations
are needed to provide additional insight.

4.3.5. The gut microbiome-skeletal muscle
signaling axis.

Several trillion bacteria inhabit the gastrointestinal tract,
and these microbes affect physiological processes rang-
ing from immune function to nutrient absorption (857).
The continued development of ever more powerful
sequencing technology underlies the heightened inter-
est in the gut microbiome by allowing for the identifica-
tion of individual bacterial species via metagenomic
analysis. Various reviews have summarized the few
studies that have investigated how exercise is able to al-
ter the bacterial composition of the gut microbiome
(858–860). A review by Mailing et al. (858) detailing how
exercise affects the microbiome in humans indicates
that 1) 6 wk of endurance training increases the abun-
dance of short-chain fatty acid (SCFA)-producing taxa
and these effects are reversed after detraining (861), 2) a
trend for increased bacterial diversity occurs with 8 wk
of endurance training (862), and 3) a higher Firmicutes-
to-Bacteroidetes ratio is associated with a higher aero-
bic capacity (863). Although informative, less research
exists detailing the gut microbiome responses to resist-
ance training. Cronin et al. (862) performed an 8-wk
combined aerobic and resistance training intervention in
which 90 participants were randomized to one of three
groups including exercise training alone, exercise train-
ing with whey protein supplementation, and whey pro-
tein supplementation only. In short, the authors reported
no significant changes in fecal taxonomic composition
following the exercise interventions. Bycura et al. (864)
reported how 8 wk of endurance training versus resist-
ance training affected the gut microbiome in healthy,
younger adults. Endurance training elicited more robust
microbiome alterations compared to resistance training,
indicating that resistance training either does not appre-
ciably affect the microbiome or does so in a more subtle
manner. Moore et al. (865) also examined fecal samples
in older participants after 6 wk of resistance training.
The authors reported that biome diversity metrics were
not significantly altered despite this shorter period of re-
sistance training causing a significant increase in
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strength and skeletal muscle hypertrophy. Recent data
in mice agree, in principle, with the two aforementioned
human trials and also indicate that 4 wk of ladder climb-
ing does not appreciably alter gut microbiome diversity
metrics (866).
Although this preliminary evidence suggests that

shorter-term resistance training does not appreciably
impact the composition of the gut microbiome in
humans, a preclinical study found that a healthy gut
microbiome is necessary for skeletal muscle adaptation
to exercise (867). Specifically, these authors reported
that antibiotic-induced gut dysbiosis impairs soleus and
plantaris muscle hypertrophy in mice subjected to 8 wk
of loaded voluntary wheel running and this occurs de-
spite drug-treated and untreated mice running similar dis-
tances. On the basis of these findings, the authors
speculated that there are yet-to-be identified microbially
derived metabolites that are required for optimal muscle
adaptation to exercise training, which may include amino
acids, bile acids, or SCFAs. Also notable are the earlier
findings of B€ackhed et al. (868), who reported that germ-
free mice, which completely lack commensal bacteria,
display an atrophy phenotype. Finally, Castro et al. (869)
recently determined that 12 wk of weighted ladder climb-
ing in rats decreases the relative phyla abundance of
Pseudomonas, Serratia, and Comamonas, while increas-
ing Coprococcus. Although it remains to be deter-
mined, the authors speculated that the change in the
composition of the gut microbiome with mechanical
overload reduces inflammation, which improves meta-
bolic and hypertrophic outcomes. This area of study is
still in its infancy, and the goal of future studies will be
to identify specific bacterial species and their respec-
tive metabolites that have direct or indirect roles in reg-
ulating muscle hypertrophy in response to mechanical
loading.

5. A BRIEF DISCUSSION ON HOW SEX, RACE,
AND AGE AFFECT OVERLOAD-INDUCED
SKELETAL MUSCLE HYPERTROPHY

Skeletal muscle hypertrophy during periods of resist-
ance training appears to be conserved between sexes.
Evidence supporting this contention comes from
recent meta-analyses showing that the degree of mus-
cle hypertrophy in response to resistance training
(when considering relative or body mass-adjusted val-
ues) is similar between males and females (734, 870),
and similar data have been published since these
meta-analyses (871). Moreover, mechanisms such as
increased muscle protein synthesis, mTORC1 signaling,
and the satellite cell response to resistance exercise
are similar between sexes (222, 366, 731), which has

been confirmed in preclinical models. However, these
findings do not consider the fact that females are an
understudied population in sports sciences (872, 873).
As mentioned above, more data are needed in females
to characterize how estrogen receptor signaling,
among other inherent aspects of female physiology,
may affect hypertrophic outcomes.
Although much more limited, there is evidence sug-

gesting that race does not significantly affect the hy-
pertrophic response to resistance training (874).
Notwithstanding, more research is needed on diverse
races, given that younger adult Caucasians have
been the commonly examined population in many
studies cited here.
Finally, although aging may impair the hypertrophic

responses to mechanical overload, this is a more
nuanced topic in the literature. Multiple studies have
indicated that resistance training can lead to skeletal
muscle hypertrophy in older adults (68, 722, 737, 740,
875–886), albeit some studies have indicated that aging
impairs acute anabolic signaling and longer-term hyper-
trophic responses (880, 887–889). A recent meta-analy-
sis by Straight et al. (890) suggests that increase in
myofiber size with resistance training is impaired in older
participants, which supports the notion that aging blunts
hypertrophic outcomes. Studies that have obtained
muscle biopsies have also indicated that participants
>80 yr old show limited muscle plasticity in response to
resistance training (520, 891) (e.g., limited increases in
fCSA or satellite cell abundance). There are a variety of
mechanisms that may be responsible for these age-
related responses including, but not limited to, height-
ened low-grade inflammation with aging that blunts ana-
bolic signaling in skeletal muscle (892, 893), older
individuals showing a dampened anabolic response to
protein and amino acid ingestion (894), a loss in higher-
threshold motor units and myofibers (895), and impair-
ments in skeletal muscle ribosome biogenesis and
proteostasis in response to one or multiple bouts of
resistance training (362, 519, 896).
As an interesting aside related to age-related

responses to mechanical overload, recent rodent
work has utilized senolytic cocktails (i.e., dasatinib
and quercetin, or D1Q) to enhance skeletal muscle hy-
pertrophy in older mice in response to overload.
Specifically, Dungan et al. (897) reported that two gavage
feedings of D1Q increases the plantaris hypertrophic
response to 14 days of synergist ablation in older mice,
which coincides with a blunted increase in senescence-
associated beta-galactosidase-positive cells during the
overload period. These researchers also reported that
older mice present more senescent cells in the extrac-
ellular matrix in response to overload (but not in the
basal state) relative to younger adult mice, and this is
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independent of D1Q administration. Hence, the hy-
pertrophic response may be impaired in older partici-
pants because of a heightened senescent cell
accumulation in the extracellular matrix during resist-
ance training. Likewise, more research is needed to
determine whether senolytic cocktails enhance skele-
tal muscle hypertrophy in older participants who per-
form longer-term resistance training.
While the effect of aging on mechanical overload-

induced skeletal muscle hypertrophy remains a salient
issue in the field, it is practically undebatable that resist-
ance training increases strength and functional out-
comes in older individuals (898–902). Furthermore, a
recent meta-analysis indicated that muscle-strength-
ening activities are inversely associated with the risk
of all-cause mortality and diseases including cardio-
vascular disease, diabetes, cancer (overall), and lung
cancer (903). Position stands by the National Strength
and Conditioning Association (899) and the American
College of Sports Medicine (904) provide resistance
training recommendations in older persons for inter-
ested readers.

6. MOVING TOWARD A UNIFIED
PERSPECTIVE ON A DEFINITION OF AND
MECHANISMS INVOLVED WITH
MECHANICAL OVERLOAD-INDUCED
SKELETAL MUSCLE HYPERTROPHY

Several attempts in the literature have been made to
define mechanical overload-induced hypertrophy in
adult skeletal muscle. Russell and colleagues (905) sug-
gest that hypertrophy is an increase in muscle mass and
cross-sectional area at the whole tissue and cellular lev-
els, and this largely agrees with Oxford’s definition pre-
sented above in this review. However, more complex
definitions exist in attempts to describe molecular
nuance. Glass (906) defined skeletal muscle hypertro-
phy in adults as an increase in muscle mass, which mani-
fests as an increase in the size, as opposed to the
number, of preexisting skeletal myofibers. Roberts et al.
(155) speculated that various forms of myofiber hypertro-
phy may occur, including conventional hypertrophy, or
the proportional increase in contractile protein as myo-
fibers increase in diameter, the disproportional increase
in (or packing of) contractile protein as myofibers
increase in diameter, or the disproportional increase in
myofiber diameter relative to contractile protein accre-
tion. Jorgenson et al. (1) suggest that conventional
myofiber hypertrophy persists during various loading
paradigms, and in some cases increases in fiber length
can coincide to interactively promote tissue cross-sec-
tional area changes. Damas, Libardi, and Ugrinowitsch

(26) suggest that “true” hypertrophy occurs when there
is an increase in the cross-sectional area of the myofib-
ers or whole muscle, without the presence of exercise-
induced muscle swelling. Finally, there is evidence to
support that longitudinal myofiber hypertrophy may
mechanistically differ from radial myofiber hypertrophy,
and this is a continued area of investigation (1).
Each definition implies that muscle tissue and myo-

fiber growth occur in tandem with contractile protein
accretion. However, several points of contention
exist regarding involved mechanisms. For instance,
Jorgenson and colleagues (1) and Roberts and col-
leagues (155) argue that the current evidence is
weak regarding mechanical overload-induced myofi-
bril hypertrophy. There are also opposing viewpoints
regarding whether myonuclear accretion via satellite
cell fusion is obligatory for myofiber hypertrophy
(545), whether myonuclei that are gained during re-
sistance training demonstrate permanence or are
lost during detraining (907–911), or whether hyper-
plasia contributes to skeletal muscle hypertrophy
during extreme loading (912, 913). Ribosome biogen-
esis, rather than enhanced translational efficiency
following bouts of overload, has been posited to be
just as, if not more, critical in promoting muscle hypertro-
phy (5, 17). Researchers have exchanged viewpoints
regarding whether edema is a significant contributor to
the early stages of muscle hypertrophy (774, 914, 915),
and the evidence is mixed concerning whether myofiber
length increases appreciably contribute to hypertrophy
with conventional resistance training (913, 916). Recent
preliminary data in humans indicate that individuals may
exhibit different morphological adaptations to the same
resistance training program (917): specifically, some
individuals may show tissue-level hypertrophy predom-
inantly through fascicle length changes, whereas
others may show tissue-level hypertrophy predomi-
nantly through fCSA increases. One of the more pro-
vocative questions related to myofiber hypertrophy
was posed in 1982 by J. D. MacDougall and colleagues
who pondered (56) whether

“. . .skeletal muscle fibers possess an unlimited capacity
for protein synthesis and enlargement, or is there a maxi-
mal or optimal size which can be attained?”

Despite the remarkable discoveries that have been
made during the past four decades, this fundamental
question remains to be answered.
The present authors agree that skeletal muscle hy-

pertrophy in response to mechanical overload gener-
ally involves cross-sectional (or radial) growth at the
tissue and myofiber levels and that this coincides with
a proportional expansion of the extracellular matrix.
Moreover, although less resolved, limited literature
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Table 1. Summary of mechanisms discussed in this review

Mechanism
Responses to

Mechanical Overload
Knowledge of Current Role(s) Knowledge Gaps

mTORC1 signaling ::: mTORC1 signaling is critically
involved with skeletal muscle hy-
pertrophy through increased
translation initiation and/or
elongation.

Further interrogation of the upstream acti-
vating signals during mechanical overload

mTORC1-independent
signaling

::: MAPK signaling and other mTORC1-
independent signals are transi-
ently activated after a bout of re-
sistance exercise to presumably
affect aspects of transcription and
translation.

Further elucidating the role MAPK signaling
and other mTORC1-independent signals
(e.g., YAP and TRIM28 phosphorylation)
have in promoting skeletal muscle
hypertrophy

Ribosome biogenesis ::: Increased translational capacity Determining whether ribosome specializa-
tion occurs with overload and, if so, deter-
mining whether this is a critical aspect of
hypertrophy

Satellite cells ::: Myonuclear accretion via fusion,
muscle repair, and nonfusion
roles

In humans, validating preliminary animal
findings suggesting that satellite cells
coordinate extracellular matrix adapta-
tions during overload; also examining
whether hypertrophy can proceed in the
absence of satellite cell-mediated myonu-
clear accretion in humans with certain dis-
eases where satellite cell counts are
reduced (e.g., MYMK mutations); finally,
determining how satellite cell fusion alters
molecular processes in myofibers (single-
cell studies) or myofiber morphology

Genetic variants Inherently present; no
changes to overload

Various single-candidate polymor-
phism studies show small hyper-
trophic advantages with certain
genotypes.

Performing deep sequencing efforts to iden-
tify novel variants and adopting statistical
approaches to examine the combinatorial
effects of multiple variants

Epigenetic alterations ::: and ;;; Methylation changes occur across
hundreds of genes in the nuclear
genome, and preliminary evi-
dence suggests demethylation of
mitochondrial genome with resist-
ance training in humans.

Determining whether gene-specific methyla-
tion responses to overload are needed for
hypertrophy to occur; further determining
whether prolonged DNA demethylation
during periods of mechanical overload
confers more robust skeletal muscle
hypertrophy

Muscle proteolysis ::: early into training,
but response sub-
sides with increased
training status.

Potentially needed for removing
damaged proteins and organelles
after initial stages of resistance
training

Determining which proteolytic system(s) is
primarily responsible for adaptive
responses early (i.e., weeks) and later (i.e.,
months to years) into training; additionally,
determining whether these proteolytic
systems are required for muscle hypertro-
phy to occur in response to loading para-
digms and/or whether synchronization
between synthesis and proteolysis directs
the degree of hypertrophy

Myostatin markers ;;; Numerous lines of evidence sug-
gest that resistance training
acutely and transiently decreases
muscle MSTN mRNA levels.

Elucidating how MSTN pathway signaling
(e.g., SMAD2/3 phosphorylation and the
mRNA expression of downstream targets)
is transiently affected during the initial
and later stages of overload and whether
these events are critically involved in the
hypertrophic response

Continued
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Table 1.—Continued

Mechanism
Responses to

Mechanical Overload
Knowledge of Current Role(s) Knowledge Gaps

Extracellular matrix
remolding

::: Markers of extracellular matrix
remodeling are altered during
periods of resistance training, but
much of this work has been con-
fined to mRNAs.

Broadening the scope of extracellular matrix
remodeling markers during resistance
training studies to determine whether
remodeling is required or merely coin-
cides with skeletal muscle hypertrophy

Angiogenesis ::: Preliminary evidence suggests that
capillary number per fiber prior to
resistance training is associated
with hypertrophic response to
training.

Determining whether the magnitude of
angiogenesis induced by resistance train-
ing (and/or enhanced microvessel func-
tion) enhances muscle hypertrophy

Muscle microRNA
expression

::: and ;;; Genes involved with IGF1/PI3K/AKT/
mTOR signaling are directly and/
or indirectly regulated by various
miRNAs that are altered in
response to overload.

Moving beyond microRNA-omics-based
studies in humans to show a core set of
microRNAs involved with or needed for
skeletal muscle hypertrophy

Testosterone
signaling

??? Transient postexercise responses in
circulating testosterone concen-
trations do not correlate with in-
tracellular anabolic signaling
events (e.g., mTORC1 signaling or
muscle protein synthesis) and hy-
pertrophy. However, muscle hor-
mone receptor protein content
modestly correlates with anabolic
outcomes in some studies.

Determining whether androgen DNA bind-
ing is altered during periods of overload
and which of the identified hormone re-
ceptor-affected genes are involved with
skeletal muscle hypertrophy

Inflammation through
prostaglandin
signaling

::: Coincides with robust elevations in
protein synthesis and satellite cell
proliferation during in the initial
phases of resistance training.

Determining whether certain aspects of
inflammation (e.g., EP and FP receptor sig-
naling) are needed for, or merely coincide
with, skeletal muscle hypertrophy

b-Adrenergic signal-
ing through endog-
enous
catecholamines

??? The administration of b-adrenergic
receptor agonists promotes skel-
etal muscle hypertrophy.

Determining whether intrinsic b-adrenergic
receptor signaling via endogenous cate-
cholamines, in part, promotes skeletal
muscle hypertrophy during periods of me-
chanical overload

Angiotensin II
signaling

??? Preliminary animal evidence sug-
gested angiotensin II signaling is
involved with overload-induced
skeletal muscle hypertrophy.
However, follow-up animal stud-
ies suggest angiotensin II signal-
ing may blunt hypertrophic
responses, and human data in
this area are mixed.

Determining whether intrinsic angiotensin II
signaling blunts, enhances, or does not
affect hypertrophic outcomes in humans

Mitochondrial
biogenesis

:, ;, or $ The increase in mitochondrial vol-
ume density may precede or con-
comitantly occur with muscle
hypertrophy.

Demonstrating whether an expansion of the
mitochondria is required for myofiber hy-
pertrophy, or whether mitochondrial bio-
genesis, mitochondrial expansion, and
myofiber hypertrophy merely coincide
with one another

Other bioenergetic
adaptations

::: Resistance training can promote dif-
ferential metabolic adaptations in
skeletal muscle.

Determining whether metabolic adaptations
(e.g., enhanced glycolytic flux) provide
skeletal muscle with substrates needed
for cell growth

Continued
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discussed here (55, 99) [and in other recent reviews
(1, 155)] supports the idea that myofibril and mitochon-
drial content mostly scale with myofiber hypertrophy
induced by resistance training in humans. However,
there are limited data or knowledge gaps that require
further investigation into how different modes of me-
chanical overload affect 1) longitudinal tissue and
myofiber growth, especially since most investigations
examine radial growth; 2) type I versus type II myofiber
hypertrophy, which seems to be load dependent in
humans albeit not well delineated (814); 3) alterations
in the size and number of myofibrils; 4) the three-
dimensional properties of myofibrils, the mitochon-
drial and sarcoplasmic reticula, and the cytoskeletal
network in type I and II myofibers; and 5) the time
courses of 1–4 listed here. Additionally, a central tenet
of this review is that several mechanisms are required
for mechanical overload-induced skeletal muscle hy-
pertrophy as shown in TABLE 1, and much remains to
be learned in these areas as well.

7. CONCLUSIONS

Skeletal muscle hypertrophy research has rapidly
evolved since the landmark report by Morpurgo in 1897.
Pioneering discoveries in the field have motivated
others to adopt innovative methodologies and drive the
research boundaries in meaningful ways. Given the

rapid advancements in molecular-based research tech-
niques, investigations in upcoming years will continue to
confirm or refute which of the discussed mechanisms
are obligatory for (rather than coinciding with) load-
induced skeletal muscle hypertrophy. More importantly,
these efforts will likely unveil novel mechanisms that
continue to reshape our thinking in this area of muscle
biology.
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Mechanism
Responses to
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Knowledge of Current Role(s) Knowledge Gaps

Muscle circadian
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??? The oscillation of core clock genes
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lates hundreds of genes related
to metabolism, protein turnover,
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transcriptome is altered (or disrupted) dur-
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involved mechanism with molecular adap-
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and myonuclear
and RNA trafficking
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dependent RNA transport from
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tial for the translation process to
occur and 2) myonuclear traffick-
ing to focal injury sites occurs
through microtubules.
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Microbiome
alterations

Minimal changes in bac-
terial species
diversity
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gut microbiome.
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