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A B S T R A C T

Background: Rodent and human studies indicate that testosterone has an antidepressant effect. The mechanisms
via which testosterone exerts its antidepressant effect, however, remain to be elucidated. Some studies assume
downstream effects of testosterone on sexual function and vitality followed by improvement of mood. Emerging
evidence suggests that testosterone may be acting in the brain within depression-relevant areas, whereby eli-
citing direct antidepressant effects, potentially via neuroplasticity.
Methods: Literature was searched focusing on testosterone treatment and depression and depression-like be-
havior. Due to the unilateral clinical use of testosterone in men and the different modes of action of sex hor-
mones in the central nervous system in men and women, predominantly studies on male populations were
identified.
Results: The two proposed mechanisms via which testosterone might act as antidepressant in the central nervous
system are the support of neuroplasticity as well as the activation of the serotonin system. Additionally, tes-
tosterone downregulates glucocorticoid output and reduces levels of pro-inflammatory markers, thereby acting
as important counter regulatory agent reducing levels of neurotoxic factors in the central nervous system.
Conclusion: Although it is possible that testosterone acts via the serotonin system or the downregulation of the
immune or hyperactive stress physiological systems, recent evidence supports the hypothesis that testosterone
also elicits anti-depressant effects via directly promoting neuroplasticity. Potential implementations of testos-
terone treatment in mood disorders are discussed.

1. Introduction

Testosterone treatment (TT) is currently emerging as a potential
antidepressant treatment in men. While early studies did not con-
sistently demonstrate beneficial effects of TT in depressed men
(Seidman, Spatz, Rizzo, & Roose, 2001; Pope, Cohane, Kanayama,
Siegel, & Hudson, 2003; Giltay et al., 2010; Pope et al., 2010; Seidman,
Araujo, Roose, & McKinlay, 2001, 2009), a recent meta-analytic ex-
amination reported TT to be effective and efficacious in reducing de-
pressive symptoms in males (Walther, Breidenstein, & Miller, 2019). In
this analysis, the authors also identified a dose-response relationship,
with higher TT dosage-regimens achieving larger effects (Walther et al.,
2019). However, although TT-related antidepressant effects appear to
be relatively robust, little is known about the underlying mechanisms
causing the reduction of depressive symptoms in men. As a steroid
hormone, TT crosses the blood-brain barrier and continues to act in the

central nervous system by binding to the androgen receptor (AR).
Previous studies found that testosterone administration leads to en-
hanced adult neurogenesis in the hippocampal dentate gyrus, pro-
moting cognitive improvement and mood regulation in depressed in-
dividuals (Mahmoud, Wainwright, & Galea, 2016). Adult neurogenesis,
the formation of new neurons in the adult brain, is a major contributor
to neuroplasticity and impairments in this process have been linked to
depressive symptoms (Boldrini et al., 2013; Egeland et al., 2017;
Rimmerman, Schottlender, Reshef, Dan-Goor, & Yirmiya, 2017). Below
we describe the literature examining the relation between low testos-
terone and depression from clinical observation studies and TT studies.
Subsequently, after introducing the reader to the current knowledge on
established antidepressants and neurogenesis, we will outline how TT
potentially contributes to the improvement in mood via the modulation
of adult hippocampal neurogenesis. Finally, we will delineate alter-
native mechanisms through which testosterone might exert its
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antidepressant effect related to stress physiological systems and in-
flammation.

2. Clinical aspects of low testosterone and its relation to
depression

Although TT prescriptions have increased 3-fold between 2002 and
2016 (Baillargeon, Kuo, Westra, Urban, & Goodwin, 2018), TT is only
recommended for men with symptomatic hypogonadism (Bhasin et al.,
2018). Hypogonadism, which is defined by testosterone deficiency
coupled with clinical symptoms, such as erectile dysfunction, is not
uncommon in men. It has been reported to affect approximately 2.1% of
the male population aged 40 to 79 years, and critically low total plasma
testosterone levels (below 11 nmol/l) are present in 17% of men in this
age group (Wu et al., 2010). Typical symptoms that are related to low
testosterone levels are sexual dysfunction, redistribution of body com-
position with loss of muscle mass and an increase in visceral fat, me-
tabolic syndrome, osteoporosis and worsening of cognitive abilities
(Walther & Ehlert, 2015). Importantly, mood disorders, in particular an
increased risk of depression, has been reported for young and older men
suffering from hypogonadism (Giltay et al., 2017; Korenman, Grotts,
Bell, & Elashoff, 2018; Shores et al., 2004). However, for the general
relation of basal endogenous testosterone levels and depressive mood in
men, a mixed picture emerges, with some studies demonstrating a ne-
gative association between testosterone levels and depressive burden
(Almeida, Yeap, Hankey, Jamrozik, & Flicker, 2008; Barrett-Connor,
Von Mühlen, & Kritz-Silverstein, 1999; Ford et al., 2016) and others
showing no association (Kische et al., 2017; Wu et al., 2010). Moreover,
several studies suggest a negative association between testosterone and
depressive symptoms only to be present in subgroups of men, such as
hypogonadal or elderly men (2001b, Seidman, Araujo et al., 2001,
2002), and subtypes of depression, including atypical depression
(Rodgers et al., 2015). Furthermore, studies investigating basal testos-
terone levels in explicitly depressed compared with non-depressed men,
suggest a link between reduced testosterone levels in men diagnosed
with major depressive disorder (MDD) (McIntyre et al., 2006;
Schweiger et al., 1999; Shores et al., 2004), however, no association has
also been reported (Asselmann et al., 2019; Davies et al., 1992; Rubin,
Poland, & Lesser, 1989; Sigurdsson, Palsson, Aevarsson, Olafsdottir, &
Johannsson, 2014). Studies focusing on dysthymic disorder demon-
strate a more consistent association with reduced testosterone levels
and mood impairment (Markianos, Tripodianakis, Sarantidis, &
Hatzimanolis, 2007; Seidman et al., 2002).

This is of particular interest since testosterone levels in men con-
tinuously decline with increasing age and it has been shown that an
increased burden of depressive symptoms intensifies the age-related
decline in testosterone and dehydroepiandrosterone levels (Walther,
Phillip, Lozza, & Ehlert, 2016). Therefore, TT in men has been ex-
tensively studied and for male hypogonadism multifaceted beneficial
effects are reported, including sexual function, body composition and
mood (Bhasin et al., 2018). A previous meta-analysis showed a bene-
ficial effect of TT on mood in hypogonadal men (Elliott et al., 2017) and
a recent meta-analytic study reported that TT might act as an anti-
depressant also in eugonadal men with relatively low testosterone le-
vels (Walther et al., 2019). However, while potential lower testosterone
thresholds are of current debate, there is no threshold distinguishing
men who won’t profit from those who will profit from TT (Morgentaler
et al., 2016). This is on one hand caused by different intraindividual
thresholds for testosterone deficiency symptoms, while on the other
hand related to interindividual differences in circulating sex hormone
binding globulin (inactivating the biological active testosterone com-
pound), androgen receptor distribution in the central nervous system
and androgen receptor repeat length (modulating androgen receptor
function) (Walther & Ehlert, 2015). The recent meta-analytic ex-
amination of TT and depressive symptoms in men suggests, that the
mood-enhancing effect of TT in men is independent of the gonadal

status, initial level of depression severity and age (Walther et al., 2019).
Importantly, due to the unilateral clinical use of testosterone in men

and the different modes of action of sex hormones in the central ner-
vous system in men and women, predominantly studies on male po-
pulations were identified. However, there are few studies investigating
TT as adjunct therapy in women with diagnosed depression showing
positive results (Dias et al., 2006; Miller et al., 2009). In addition, two
randomized controlled trials using TT further report a mood improving
effect of the treatment, though women with depression were explicitly
excluded (Davis et al., 2006; Goldstat, Briganti, Tran, Wolfe, & Davis,
2003). Although these findings are promising, the low number and
unwanted side effects of TT in women do not allow to further analyze
the antidepressant effect of testosterone in women more precisely and
the findings must be interpreted with respect to men.

Taken together, an antidepressant effect of TT emerges, while the
underlying mechanisms responsible for this effect remain elusive. It has
been discussed that the positive effect on sexuality and body compo-
sition due to TT may have a follow-on effect on mood, suggesting no
direct mechanistic connection but a downstream effect due to the
generally improved health and quality of life (Elliott et al., 2017).
However, recent animal and human studies indicate potential direct
mechanisms, through which TT may exhibit its mood-enhancing effect.
Below we discuss a possibility how testosterone could also elicit direct
antidepressant effects, potentially via the modulation of neuroplasti-
city.

3. Adult hippocampal neurogenesis and antidepressants

The hippocampus is the main brain area involved in the modulation
of the psychophysiological stress response, providing negative feedback
on the hypothalamic-pituitary-adrenal (HPA) axis activity (Jacobson &
Sapolsky, 1991). In addition to its role in the regulation of glucocorti-
coid release, the hippocampal dentate gyrus is also the primary region,
where neurogenesis, the generation of new neurons, continues during
adulthood (Ming & Song, 2005). During this process, termed adult
neurogenesis, neural stem cells that reside in a neurogenic niche, divide
occasionally and give rise to progenitor cells, which then mature to
functional granule neurons. With stress being a strong negative reg-
ulator of new neuron formation and a leading risk factor for developing
mood-related disorders, adult hippocampal neurogenesis has been
linked to emotional and cognitive processes underlying depression
(Cameron & Gould, 1994; Dranovsky & Leonardo, 2012; Gould,
Tanapat, McEwen, Flügge, & Fuchs, 1998; Lagace et al., 2010).

Initial studies have shown impaired adult neurogenesis in animal
models of depression (Lee et al., 2006; Pham, Nacher, Hof, & McEwen,
2003), which could be reversed by antidepressant treatment (Duman,
Nakagawa, & Malberg, 2001; Malberg, Eisch, Nestler, & Duman, 2000),
although, the ablation of neurogenesis alone was not sufficient to in-
duce a depressive phenotype (Eliwa, Belzung, & Surget, 2017; Petrik,
Lagace, & Eisch, 2012). These results suggested an interesting link be-
tween the production of newly born neurons and stress-induced de-
pressive disorders, positioning adult neurogenesis in the center of
clinical depression paradigms.

Since these early observations, most effective treatments of mood
disorders – fluoxetine (Malberg et al., 2000), lithium (Chen, Rajkowska,
Du, Seraji-Bozorgzad, & Manji, 2000), electroconvulsive shocks
(Madsen et al., 2000; Scott, Wojtowicz, & Burnham, 2000), anti-
psychotics (Benninghoff et al., 2013), thyroid hormones (Remaud,
Gothié, Morvan-Dubois, & Demeneix, 2014) and newer antidepressants,
such as ketamine (Keilhoff, Bernstein, Becker, Grecksch, & Wolf, 2004),
all have been shown to boost adult neurogenesis and the increased
production of new neurons seems fundamental for some behavioral
effects of antidepressants in rodent models of depression (David et al.,
2009; Hill, Sahay, & Hen, 2015; Santarelli et al., 2003; Surget et al.,
2011). Adult neurogenesis is also implicated in efficient pattern se-
paration and cognitive flexibility – hippocampal-dependent functions
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that are commonly impaired in mood-related disorders (Kheirbek,
Klemenhagen, Sahay, & Hen, 2012; Leal, Tighe, & Yassa, 2014). Evi-
dence from animal studies suggests that the ablation of neurogenesis is
sufficient to impair cognitive functions related to depression
(Burghardt, Park, Hen, & Fenton, 2012; Nakashiba et al., 2012) and to
potentiate depression-like behaviors following acute stress (Schloesser,
Manji, & Martinowich, 2009). Together these observations underline
the beneficial effects of pro-neurogenic therapies in mood-disorders.

Interestingly, recent evidence suggests that adult neurogenesis oc-
curs throughout life also in the human hippocampus (Boldrini et al.,
2018; Moreno-Jiménez et al., 2019; Spalding et al., 2013) and post
mortem analysis revealed a decreased neural progenitor cell number in
the dentate gyrus of depressed patients (Boldrini et al., 2009; Lucassen,
Stumpel, Wang, & Aronica, 2010). Studies evaluating the effect of an-
tidepressant treatment on neurogenesis levels in depressed individuals
identified inconsistent results with no effect (Lucassen et al., 2010) or
an increase (Boldrini et al., 2009) in neuronal progenitor cell number
and proliferation following antidepressant therapy. Despite these dis-
crepancies in the levels of neural progenitor cell proliferation, both post
mortem and high-resolution magnetic resonance imaging volumetric
studies consistently demonstrate smaller dentate gyrus volume and
decreased total granule cells number in patients with depression (Wang
et al., 2010; Boldrini et al., 2013; Huang et al., 2013), an effect that can
be reversed by antidepressant treatment (2013, Arnone et al., 2013;
Boldrini et al., 2014; Tendolkar et al., 2013). This may indicate that
depression affects neurogenesis on the neuronal differentiation or sur-
vival stage rather than progenitor proliferation, and antidepressant
induced hippocampal growth results reflects multiple forms of bene-
ficial neuroplasticity.

Finally, although there is no definitive evidence that boosting
neurogenesis alone is sufficient to reverse depressive behavioral phe-
notypes, studies originating from neurogenic theory lead to the iden-
tification of novel promising therapeutics such as P7C3 (Walker et al.,
2015), baicalin (Gao et al., 2018; Zhang et al., 2016) or neurofibromin
(Li, Li, McKay, Riethmacher, & Parada, 2012), that induce anti-
depressant-like effects via increasing hippocampal neurogenesis in ro-
dent models of stress and depression. Alternatively, non-pharmacolo-
gical manipulations that are associated with antidepressant effects in
models of stress, could promote behavioral recovery via modulation of
adult neurogenesis. Emerging examples are neurosteroids, such as an-
drogens and estrogens. Both compounds can be produced locally in the
in dentate gyrus granule cells, which carry complete steroidogenic
systems to synthesize steroid hormones from cholesterol (Hojo et al.,
2004; Mukai et al., 2006). Levels of locally produced dihy-
drotestosterone, which is derived from testosterone, were shown to
increase after physical exercise (Okamoto et al., 2012), a strong positive
modulator of adult hippocampal neurogenesis (van Praag, Christie,
Sejnowski, & Gage, 1999; van Praag, Kempermann, & Gage, 1999).
Interestingly, the increase in exercise-induced neurogenesis was absent
after treatment with the AR antagonist flutamide (Okamoto et al.,
2012), suggesting the involvement of androgens in this process. This
endogenously activated neuroplasticity could counteract stress-induced
cell loss and neuronal atrophy leading to maintenance of functioning
neuronal networks involved in emotional and cognitive processing.

4. Does testosterone influence neuroplasticity?

Although evidence is still scarce, a few studies have indicated a
direct link between testosterone administration and antidepressant ef-
fects via neuroplasticity (Carrier et al., 2015; Hamson et al., 2013;
Wainwright et al., 2016). First, Hamson et al. examined adult hippo-
campal neurogenesis in two groups of male rats in which they elimi-
nated endogenous androgen production through gonadectomy. In ad-
dition to castration, one group carried a mutation in the AR gene, which
rendered the animals insensitive to androgen action while the control
group had normal expression of the AR (Hamson et al., 2013). When

testosterone was administered to both groups, only the control group,
which was sensitive to androgen action, showed an increased survival
of newborn cells in the dentate gyrus. Moreover, the authors reported
that the survival of new neurons was significantly reduced after an-
drogen antagonist administration compared to placebo treatment, in-
dicating that androgen action promotes neuronal survival (Hamson
et al., 2013). Although the presence of ARs throughout the hippocampal
formation has been shown by others (Choate, Slayden, & Resko, 1998),
Hamson et al. did not find AR expression within the immature neurons
themselves, and suggested a non-cell autonomous mechanism through
other hippocampal regions influencing the cell survival. However, AR-
dependent enhancement of cell survival during the neurogenic process
might occur at other stages of neuronal maturation, which have not
been investigated in their study.

Second, Carrier et al. examined the antidepressant effects of tes-
tosterone using a rodent model of gonadectomized male rats, admin-
istering either testosterone, estradiol, or placebo (Carrier et al., 2015).
Both testosterone and estradiol treatment led to a reduced depression-
like behavior in the sucrose preference and open field tests compared
with rats receiving a placebo. However, local infusion of an aromatase
inhibitor into the dentate gyrus, which blocks the local conversion of
testosterone into estradiol, in addition to testosterone administration,
resulted in increased depression-like behavior (Carrier et al., 2015).
This suggests that the anti-depressant-like effect of TT could be, at least
in part, mediated through its metabolite estradiol that is produced lo-
cally via a site-specific conversion (Carrier et al., 2015). In the same
study, gene expression analysis of dorsal hippocampus tissue from go-
nadectomized male rodents revealed that testosterone and estradiol
treatment resulted in an overlap in changes in hippocampal gene ex-
pression, indicating shared genomic pathways for testosterone and es-
tradiol in the reduction of depression-like behavior. Furthermore, by
using gene expression profiling, the data suggested neurogenesis-re-
lated synaptic plasticity as the underlying mechanism of the anti-
depressant effects of testosterone and estradiol treatment (Carrier et al.,
2015).

Third, Wainwright et al. suggested an anti-depressant effect of TT
via neuroplasticity, using a rodent model of depression, the chronic
unpredictable stress paradigm. The authors treated adult gonadecto-
mized male rats with either testosterone, an antidepressant (imipra-
mine) or both, where the administration of testosterone reduced de-
pression-like behavior only following chronic unpredictable stress, but
not in the absence of stress (Wainwright et al., 2016). Similarly, a
number of studies reported that adult neurogenesis primarily reduces
depression-like behavior following stress (David et al., 2009; Santarelli
et al., 2003; Surget et al., 2011). Wainwright et al. also found that the
combination of testosterone and imipramine led to enhanced imipra-
mine-induced neurogenesis, indicating beneficial effects of additional
testosterone administration. However, in contrast to the study by
Hamson et al., the authors observed no increase in neurogenesis after
the administration of testosterone alone (Wainwright et al., 2016). It is
of note, however, that the duration of the TT was shorter (21 days in
Wainwright et al., 2016 versus 30 days in Hamson et al., 2013), in-
dicating that testosterone-related changes in neurogenesis may require
more than 21 days of administration for the identification of potential
effects. Moreover, the delayed effect suggests that structural changes
may also be involved, such as neuroplasticity during neurogenic ma-
turation. This discrepancy of the results fosters further investigation of
the temporal dynamics of TT in regards to the investigated neurogenesis
markers along the neurogenic process.

While the outlined studies indicate that testosterone has a direct
effect on neuroplasticity, there is another line of research suggesting
that testosterone exerts serotonin-dependent antidepressant effects.
Current antidepressants, such as imipramine, act via the serotonin
system, which also has implications in hippocampal neurogenesis
(Alenina & Klempin, 2015; Gould, 1999). Studies have shown that
testosterone has an activating effect on the serotonin system (Kranz

A. Walther, et al. Neurology, Psychiatry and Brain Research 32 (2019) 104–110

106



et al., 2015), and a recent study identified a link between serotonin
signaling in the hippocampus and plasma testosterone levels in healthy
men (Perfalk et al., 2017). Therefore, in addition to the increasing
evidence suggesting that testosterone directly affects neuroplasticity, an
indirect route of testosterone influencing depression might be mediated
through the activation of the serotonin system.

Taken together, these studies highlight the anti-depressant action of
testosterone and suggest that the increase of neuroplasticity via adult
hippocampal neurogenesis may be one potential mechanism that un-
derlies this effect (Fig. 1).

5. Functional crosswalk between testosterone the HPA and the
inflammatory system

Although the above studies suggest a direct effect of TT in the brain,
testosterone, the main effector of the hypothalamic-pituitary-gonadal
(HPG) axis, also contributes to changes along the HPA axis, which
might indirectly influence neuroplasticity and mood. Studies in the field
of the biological basis of MDD over the last 30 years have identified a
hyperactivity of the HPA axis and a chronic low-grade inflammation as
the most consistent biological markers in MDD (Pariante, 2017). Al-
though, there is much contradictory literature, recent systematic re-
views and meta-analyses conclude that depression is associated with
increased cortisol levels (Juruena, Bocharova, Agustini, & Young, 2018;
Stetler & Miller, 2011) and pro-inflammatory markers, such as inter-
leukin-6 and C-reactive protein (Goldsmith, Rapaport, & Miller, 2016;
Köhler et al., 2017). Basal cortisol levels were further suggested to
predict the treatment response to psychological or antidepressant
treatment (Fischer, Macare, & Cleare, 2017; Fischer, Strawbridge,
Vives, & Cleare, 2017). In contrast, a meta-analytic examination
showed a reduction in a pro-inflammatory cytokine profile after treat-
ment (Köhler et al., 2018). All attempts to use these markers as pre-
dictors of depression or treatment response in clinical settings, how-
ever, fail due to the lack of specificity and considerable interindividual
differences. However, the observed increased concentrations of gluco-
corticoids and pro-inflammatory markers in MDD and the well-estab-
lished fact that high levels of glucocorticoids and pro-inflammatory
factors are also associated with neurodegenerative diseases (Chen,
Zhang, & Huang, 2016; Conrad et al., 2007; Kim, Na, Myint, & Leonard,
2016; Miller & Raison, 2016; Uno et al., 1994; Vyas et al., 2016), are of
great relevance when examining potential alternative mechanisms
through which testosterone may exert its mood-enhancing effects.

Testosterone was shown to down regulate the central stress re-
sponse, including the HPA axis at the hypothalamic level by decreasing
the secretion of corticotropin-releasing hormone and arginine vaso-
pressin (Hermans et al., 2007; Johnson, Kamilaris, Chrousos, & Gold,
1992; Rubinow et al., 2005; Viau, 2002). Testosterone levels also ne-
gatively correlate with pro-inflammatory markers and white blood cell
count in men (Haring et al., 2012; Maggio et al., 2006). Moreover, TT
was shown to downregulate pro-inflammatory markers in conditions
such as the metabolic syndrome (Kalinchenko et al., 2010). in vitro and
in vivo studies suggest different pathways through which testosterone

acts as anti-inflammatory factor, including the suppression of tumor
necrosis factor alpha in glial cultures and decreasing toll-like receptor-4
expression and sensitivity in macrophages (Vasconcelos, Cabral-Costa,
Mazucanti, Scavone, & Kawamoto, 2016). Thereby, testosterone and
the entire HPG axis may act as important counter-regulatory system
controlling the levels of glucocorticoids and pro-inflammatory markers,
which otherwise may be present in excessive concentrations and thus
exert neurodegenerative effects (Mondelli et al., 2011; Taki et al., 2013;
Tene et al., 2018). Therefore, emerging sex specific models of depres-
sive disorders paying respect to differing levels of sex hormones in men
and women and integrating different biological systems, such as the
endocrine system and the immune system, are highly promising to
delineate the underlying pathophysiology (Schiller, Johnson, Abate,
Schmidt, & Rubinow, 2016; Walther, Penz, Ijacic, & Rice, 2017;
Walther, Rice, Kufert, & Ehlert, 2017).

6. Testosterone treatment – a potential new avenue to treat
depression in men?

Accumulating evidence from longitudinal cohort studies on en-
dogenous testosterone levels and TT studies suggests testosterone as a
potential beneficial modulator of depressive symptoms in men.
Furthermore, hypogonadal men are at increased risk for depressive
disorders (Giltay et al., 2017; Korenman et al., 2018; Shores et al.,
2004). However, due to uncertainty with regard to TT-related efficacy
for the reduction of depressive symptoms or adverse events, TT is not
recommended by clinical practice guidelines as an antidepressant
treatment for depression (National Collaborating Centre for Mental
Health UK, U., 2010) or by clinical practice guidelines for TT in hy-
pogonadal men (Bhasin et al., 2018). Therefore, more pre-registered,
high-quality randomized clinical trials investigating the effects of tes-
tosterone on depressive symptoms in men are needed. Moreover, when
consistently showing beneficial effects, subsequent larger post-mar-
keting surveillance studies will be required in order to determine
whether TT may be associated with an increased risk of rare adverse
drug reactions. This will be particularly important in order to render the
potential of TT for the treatment of depressive disorders in men ac-
cessible to the general public.

Additional in vitro and in vivo studies are required to address the
extent to which the outlined mechanisms are responsible for the anti-
depressant effect of testosterone. Moreover, it needs to be determined
to which extent the activation of the serotonin system is integrated in
these processes. Potentially, these changes in the neuroarchitecture are
further accompanied by the additional beneficial actions of testosterone
on the HPA axis reducing total glucocorticoid output as well as reducing
pro-inflammatory markers in the periphery and the central nervous
system.

7. Conclusion

This review highlights potential underlying pathways of the anti-
depressant effect of testosterone. Similar to other antidepressants, TT

Fig. 1. Adult neurogenesis in the hippocampal
dentate gyrus is an example of continued
neuroplasticity throughout life. In this process,
neural stem cells divide and give rise to pro-
liferating progenitor cells, which pass through
different developmental stages to mature into
functional new neurons. Evidence suggest in-
volvement of this process in depressive dis-
orders and beneficial effects of clinical anti-
depressants. Testosterone treatment
potentially contributes to the improvement in
mood via the modulation of new neuron gen-
eration, likely via promoting the survival of the
new born neurons.
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may increase neuroplasticity and thereby promote the reduction of
depressive symptoms. While testosterone might exert beneficial effects
on mood and behavior through the activation of the serotonin system,
the here discussed studies suggest that a serotonin-independent anti-
depressant mechanism is also involved. Additional beneficial effects of
testosterone related to stress physiological systems as well as the im-
mune system might further support the antidepressant effect of TT.
However, it is of note that not only testosterone alone, but also its site-
specific conversion to estradiol and other related metabolites may elicit
antidepressant actions. In summary, the discussed studies prompt fu-
ture research to determine the pathways that underlie the mood-en-
hancing effects of TT in order to potentially apply this approach for the
treatment of depressive disorders in men.
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