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ABSTRACT

Serum testosterone plays a pivotal role in the pathogenesis and treatment of prostate cancer, influencing tumor growth and
progression. This review synthesizes current clinical evidence on the dual role of serum testosterone as both a biomarker of car-
cinogenesis and a target for therapeutic intervention. We discuss the mechanisms linking androgen signaling to prostate cancer
development, emphasizing the role of testosterone in androgen receptor activation and cellular proliferation. Furthermore, we
explore the clinical implications of testosterone suppression strategies, including androgen deprivation therapy (ADT) and bipo-
lar androgen therapy (BAT), highlighting their impact on patient outcomes. Emerging evidence on the prognostic significance of
nadir testosterone levels, testosterone rebound, and treatment resistance is also analyzed. Finally, we address the challenges and
opportunities in testosterone monitoring, aiming to enhance precision medicine approaches for managing prostate cancer. This
review underscores the importance of personalized testosterone-based strategies to optimize therapeutic outcomes and improve
patient quality of life.

1 | Background

Testosterone (TST) is the primary male sex hormone and plays
a crucial role in male health. Primarily secreted by the testes,
serum TST levels rise sharply during puberty, promoting the
development of male reproductive organs and secondary sexual

characteristics, including muscle and bone growth, voice deep-
ening, and hair distribution [1, 2]. Additionally, TST is essential
for maintaining sexual function, mood, energy levels, cognitive
function, and cardiovascular health. Low serum TST levels may
lead to issues, such as decreased libido, osteoporosis, obesity,
and depression, and are also associated with an increased risk

Abbreviations: ADT, androgen deprivation therapy; AR, androgen receptor; BAT, bipolar androgen therapy; BMI, body mass index; CI, confidence interval; CRPC,
castration-resistant prostate cancer; CSS, cancer-specific survival; DHT, dihydrotestosterone; GS, Gleason scores; HR, hazard ratio; HSPC, hormone-sensitive prostate
cancer; IM, intramuscular; LH-RH, luteinizing hormone-releasing hormone; mCRPC, metastatic castration-resistant prostate cancer; mHSPC, metastatic hormone-
sensitive prostate cancer; OR, odds ratio; ORC, replication origin complex; ORS, origin replication sites; OS, overall survival; PARP, poly (ADP-ribose) polymerase;
PCa, prostate cancer; PD-L1, programmed death-ligand 1; PFS, progression-free survival; PSA, prostate-specific antigen; PSMA, prostate-specific membrane antigen;
pT, pathological tumor stage; QoL, quality of life; RP, radical prostatectomy; SHBG, sex hormone-binding globulin; TCR, time to castration resistance; TD, testosterone

deficiency; TRT, testosterone replacement therapy; TST, testosterone.

© 2025 The Japanese Urological Association.

International Journal of Urology, 2025; 0:1-16
https://doi.org/10.1111/iju.70125

1of 16


https://doi.org/10.1111/iju.70125
https://orcid.org/0000-0003-4818-3064
mailto:
https://orcid.org/0000-0002-8902-7853
mailto:rbatbat1@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fiju.70125&domain=pdf&date_stamp=2025-05-23

of cardiovascular disease [3, 4]. Therefore, maintaining normal
TST levels has a significant impact on men's overall health, qual-
ity of life (QoL), and longevity.

Many studies aimed to clarify serum TST's role in prostate
cancer (PCa). Androgens (TST) are widely recognized to in-
fluence proliferation, apoptosis, angiogenesis, metastasis,
and differentiation of PCa in complex ways. Prostate growth
is androgen-dependent; without androgens, prostate develop-
ment is hindered, and androgen deprivation leads to prostate
atrophy. Historically, the link between TST and PCa centered
on the concept of TST as “fuel” for cancer cells. However, this
traditional view has been challenged by some negative find-
ings. Multiple TST trials lasting up to 36 months have failed to
reveal any significant increase in PCa incidence, and at least
16 longitudinal studies involving hundreds of thousands of
men have consistently found no long-term risk of PCa devel-
opment [5, 6].

Currently, the serum TST shows a complex and contradictory
association with PCa that warrants further investigation. This
review aims to reassess and clarify the relationship between
serum TST and PCa based on recent clinical evidence, further
exploring the role of serum TST levels in the progression, diag-
nosis, treatment, and prognosis of PCa patients.

2 | Serum TST and PCa Risk

Prostatic growth and development are largely dependent on
androgens. The link between serum TST levels and PCa was
first suggested by Huggins [7], but epidemiological studies
since then have shown inconsistent associations between
circulating TST levels and PCa risk. Although some studies
report a slightly increased risk of PCa with higher TST levels
[8-12], others suggest a mildly decreased risk or no significant
association [13-15]. Gann et al. [10] identified a higher risk
of PCa in men with the highest quartile of serum TST levels.
Pierorazio et al. [16] found an association between calculated
free TST and the risk of high-grade PCa. Yano et al. [17] ob-
served an increased risk of PCa in men with increased TST
levels and prostate-specific antigen (PSA) <10 pg/L. Muller
et al. [15] did not find any association between TST or dihy-
drotestosterone (DHT) levels and PCa incidence or Gleason
grade in the placebo arm of the REDUCE trial. Roddam et al.
[6] conducted a meta-analysis that did not find a significant
association between TST levels and the risk of PCa.

No significant correlation has been found between pros-
tate volume, PSA levels, endogenous TST, or PCa incidence
[6, 15, 18, 19], although some clinical researchers have proposed
that the ratio of TST levels to prostate volume may predict tumor
progression in low-risk PCa [20]. Population studies also show
that natural variations in TST levels do not uniformly correlate
with PCa [6]. Methodological limitations, including low statisti-
cal power, small sample sizes, minimal differences in hormone
levels between cases and controls, and laboratory variability,
have hindered definitive conclusions [21]. Moreover, confound-
ing factors, such as body size, physical activity, diabetes, and
benign prostatic hyperplasia are not consistently controlled for,
adding further complexity.

Recent studies, however, have highlighted a potential link
between low free-TST levels and PCa. But in three studies
that directly measured free-TST, no significant association
was observed [9, 13, 22]. A meta-analysis by Eaton et al. [23]
that reviewed eight prospective studies (817 cases, 2107 con-
trols) found no overall association between TST levels and
PCa risk. Yet some evidence suggests that bioavailable TST,
when adjusted for sex hormone-binding globulin (SHBG),
may correlate with PCa risk [10], as SHBG itself has shown
associations with PCa and is inversely correlated with obesity
[24]. But the lack of a protective effect of obesity on PCa sug-
gests that circulating TST is unlikely to be a major risk factor.
Associations between sex steroid hormones and PCa appear
stronger in leaner men than in overweight or obese men, likely
due to disrupted insulin metabolism and altered sex steroid
balance in the latter, which obscures androgen and estrogen
associations [25, 26]. Such findings complicate the androgen-
PCa relationship, as SHBG and TST levels interact with mul-
tiple metabolic factors. Geographic and racial differences in
androgen levels and PCa risk may further complicate these
associations, possibly due to variations in the intraprostatic
conversion of TST to DHT linked to 5a-reductase enzymatic
activity [27, 28]. Some studies observed a modest decrease in
PCa risk with higher total TST levels, suggesting that low TST
might serve as a marker for more aggressive PCa [5, 29, 30].
Notably, research by Morgentaler et al. [31] indicates that hy-
pogonadal men with lower TST levels have higher positive bi-
opsy rates, with heightened risk particularly in men with TST
<250ng/dL and a PSA level of 2.0-4.0ng/mL. Men with TST
levels <250ng/dL had a 21% cancer rate, compared to 12% for
those with TST levels >250ng/dL. Cancer probability more
than doubled for men in the lowest tertile compared to those
in the highest tertile for both total and free TST. Particularly
concerning was the combination of low TST and a PSA of
2.0-4.0ng/mL, yielding a 30% cancer rate [31].

These observations imply that low TST does little to prevent
PCa. Conversely, PCa is very common in men with TST defi-
ciency, and low TST levels increase the risk of higher Gleason
scores (GS) and poor outcomes in PCa [32-35].

Nonetheless, whether low TST contributes causatively to PCa or
results from PCa progression remains unresolved. Some studies
report an increase in TST levels following radical prostatectomy
(RP), suggesting that PCa itself may suppress TST production
[36, 37]. Further investigation is warranted to clarify the timing
and mechanisms of TST suppression in PCa's natural history
and to compare pre- and post-diagnostic serum TST levels to
better understand the impact of PCa on androgen biosynthesis.
Although experimental data indicate that androgens promote
the development of PCa in experimental systems, there is no
clear clinical evidence supporting the notion that elevated en-
dogenous TST levels drive the progression of PCa in humans [38].

3 | Testosterone Replacement Therapy (TRT) and
PCa

Testosterone deficiency (TD) is associated with various health
problems, such as sexual dysfunction, cardiovascular dis-
ease, and psychological problems [39]. TRT is the preferred

20f 16

International Journal of Urology, 2025

85U80|7 SUOLILLOD A1) 8|t [dde ay) Aq peussnob ae seoile YO ‘8sn J0 Sa|n. J0} Akeiqi8uljuo A3|1M UO (SUONIPUOS-pUe-SWLB)/W0D A8 | IMAe.q 1 BUl|UO//Sdny) SUOIpUOD pue swwe | 8y 88S *[SZ02/50/52] Uo Arigitauluo A|IMm ‘SZT0L NIITTTT OT/I0p/wod A8 |m Ale.q 1 puljuo//sdny wo.j pepeojumod ‘0 ‘27022 T



treatment for TD and has been shown to alleviate or reverse
these symptoms [40, 41]. However, its use in PCa patients
raises ethical and medical concerns despite its potential
benefits.

3.1 | Androgen Saturation Model

The androgen saturation model explains the paradoxical rela-
tionship between TST and PCa. Studies suggest that the max-
imum (saturation) level of TST binding to androgen receptors
(AR) occurs at relatively low concentrations [42, 43]. Once ARs
are fully occupied, excess TST cannot further stimulate cell
growth, limiting its impact on PCa progression. Prostate tissue
is sensitive to low TST concentrations but shows minimal re-
sponse to higher levels [44, 45]. Research indicates that young
and elderly men with elevated serum TST do not experience
increased PSA levels or prostate volume, supporting this model
[46-48].

3.2 | Safety and Benefits of TRT in PCa Patients

Clinical evidence suggests that TRT is both safe and beneficial
for PCa patients with TD.

» No increased risk of PCa: TRT does not elevate the risk of
developing PCa in healthy individuals [49-51]. A recent
double-blind, placebo-controlled randomized trial evalu-
ated the prostate safety of TRT in 5246 hypogonadal men
aged 45-80years with cardiovascular risk. Over a mean
treatment duration of ~22months, TRT showed no signif-
icant difference in the incidence of high-grade PCa, any
PCa, or other adverse prostate events compared to placebo.
Although PSA levels increased in the TRT group, changes
in prostate symptoms (International Prostate Symptom
Score) were comparable between groups. These findings
suggest that TRT does not significantly elevate PCa risk in
carefully selected men, providing valuable insights into its
safety profile [52].

« No promotion of recurrence or progression: In patients
treated with TRT following RP or radiotherapy, no bio-
chemical or clinical recurrence of PCa has been observed
[53-57].

« Lower recurrence rates: Men with PCa receiving TRT exhibit
a lower rate of biochemical recurrence compared to control
groups, suggesting that increased androgen levels may have
a protective effect on PCa recurrence [58-60].

Elevated or normal TST levels may maintain prostate and early
PCacellsin a well-differentiated state. In contrast, declining TST
levels due to aging or disease progression may lead to dediffer-
entiation and greater malignancy in PCa cells [61]. Additionally,
men with PCa and TD are at higher risk for aggressive disease
[62], though low TST levels do not independently predict bone
metastasis [63].

These findings highlight the complex relationship between
serum TST and PCa, offering a new perspective on treatment
strategies, such as bipolar androgen therapy (BAT). Maintaining

high physiological TST levels may have a protective role against
PCa. Moreover, evidence indicates that TST supplementation
does not promote the progression or recurrence of PCa, provid-
ing a promising avenue for future research.

4 | Whether Low Serum TST Promotes PCa and
Guides PCa Diagnosis?

Multiple studies indicate that lower serum total TST and free
TST levels are associated with more aggressive PCa and poorer
prognosis [32-35]. These findings suggest that the relationship
between TST and PCa is not linear, and that a threshold may
exist for the onset and progression of cancer at different stages.

Several studies have linked low TST levels with higher GS in
PCa [18, 44], though findings are inconsistent. Zhang et al. [36]
found that patients with high-grade tumors had lower total TST
levels than those with moderate-grade tumors or without PCa.
Similarly, Schatzl et al. [64] reported a higher mean GS in patients
with partial androgen deficiency (TST < 300ng/dL) compared to
those with normal TST levels, suggesting lower TST levels cor-
relate with higher GS in PCa. Hoffman et al. [65] demonstrated
that patients with low TST were more likely to have a GS >8 and
a higher percentage of positive cores on biopsy, proposing that
low serum free TST may serve as a marker for more aggressive
disease, whereas total TST levels did not show a similar associ-
ation. Studies also link lower TST levels with advanced disease
characteristics [66-69]. For instance, Teloken et al. [68] asso-
ciated low preoperative TST with positive surgical margins in
RP, whereas Massengill et al. [69] observed significantly lower
preoperative TST levels in nonorgan-confined PCa cases. These
findings, confirmed across ethnic backgrounds, suggest that
low TST may predict extra-prostatic disease.

In contrast, other studies found no association between TST
levels and GS in localized PCa [70]. Baseline serum TST levels
do not predict prognosis in men with clinically localized high-
risk PCa treated with RP or neoadjuvant chemohormone ther-
apy and RP alone [71]. High pretreatment TST, however, has
been associated with organ-confined disease [72]. Limitations
in these studies include only in localized disease, retrospective
designs, unmeasured variables like body mass index (BMI) and
SHBG, and reliance on single hormone measurements, despite
Platz et al.'s finding that single measures are reasonably repre-
sentative over several years [18].

The connection between low TST and higher PCa risk remains
speculative. Hypotheses include TST suppression due to ad-
vanced disease [73], a feedback mechanism involving PSA or
DHT [36, 37], and altered hormonal environments promoting
androgen-independent PCa cells [69, 74]. One theory posits
that PCa cells produce inhibin, which suppresses TST via the
hypothalamic-pituitary axis [75]. Supporting this, Miller et al.
[37] reported elevated TST and gonadotropins after RP, unlike
after benign procedures. In animal studies, inhibin inhibits
pituitary gonadotropin production, with similar effects noted
in human studies where increased inhibin correlates with
higher PSA failure rates [76-78]. These results collectively in-
dicate that factors from malignant prostate tissue might mod-
ulate the hypothalamic-pituitary axis, potentially through
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inhibin, as reflected in endocrine changes observed post-RP.
This also explains the elevated TST after RP mentioned in the
previous section.

At the molecular level, low testosterone levels may impose
strong selective pressure on prostate cancer cells, compelling
them to enhance AR signaling in order to sustain growth. In
other words, a low testosterone milieu can drive tumor progres-
sion by promoting adaptive changes in the AR signaling path-
way—such as gene amplification, splice variant formation, and
point mutations. These adaptive changes can be summarized as
follows:

4.1 | AR Gene Amplification

In a low androgen environment, cancer cells often amplify the
AR gene to capture trace levels of androgens, thereby increas-
ing AR protein expression and sensitivity. Multiple studies have
shown that approximately 20%-30% of prostate cancers that
recur after androgen deprivation therapy (ADT) exhibit AR gene
amplification [79, 80]. This phenomenon helps maintain signal
transduction even at extremely low androgen concentrations,
thus promoting tumor cell proliferation and invasion.

4.2 | Pathogenic AR Mutations and Splice Variants

In addition to gene amplification, a low testosterone environ-
ment may promote the occurrence of pathogenic point muta-
tions in the AR gene [81] or the generation of constitutively active
splice variants (e.g., AR-V7) [82]. These alterations enable the
AR to continuously activate downstream signaling pathways in
the absence of, or in response to, only minimal levels of andro-
gens, thereby contributing to therapy resistance and tumor pro-
gression. Although pathogenic AR variants are relatively rare
in treatment-naive prostate cancer, their frequency significantly
increases in resistant tumors following prolonged ADT. Notably,
splice variants, such as AR-V7, which lack the ligand-binding
domain, are constitutively active and are commonly observed in
CRPC and low testosterone conditions [83, 84].

4.3 | Point Mutations in AR

Certain AR mutations (e.g., T878A, H875Y) expand the ligand-
binding spectrum, permitting activation of the receptor by other
steroid hormones (such as glucocorticoids), which further pro-
motes castration resistance [85].

Although low serum TST is associated with more aggressive
PCa and might serve as a marker for advanced disease, cur-
rent evidence does not conclusively show that it promotes PCa.
Nonetheless, low TST may have prognostic value and aid in
diagnosing aggressive PCa, particularly when combined with
other markers like PSA.

By combining the contents of the previous sections, we summa-
rize Table 1. Table 1 provides an overview of how pretreatment
serum TST levels relate to the GS or stage of PCa based on var-
ious studies. The studies included in this table present different

methodologies and outcomes, reflecting the complexity and
variability in the research on TST and PCa.

5 | Serum TST and ADT

Dr. Charles Huggins [86] discovered that ADT offered signifi-
cant palliative benefits for advanced PCa, establishing it as the
preferred treatment. Lower TST levels achieved through ADT
have previously been linked to longer treatment responses
[87, 88]. Current guidelines recommend maintaining TST levels
below 50ng/dL during ADT, although this target is debated as
more precise assays have emerged [89]. The classical castration
level of serum TST (< 50ng/dL) was established over 40years
ago with limited testing methods. Modern chemiluminescence
assays show a mean postsurgical TST level of 15ng/dL [90].
There is ongoing debate about redefining the castration thresh-
old to <20ng/dL.

The clinical importance of achieving lower TST levels in ADT is
well-documented. Morote was the first to report that TST break-
throughs at 20 and 50ng/dL were linked to poorer outcomes,
suggesting that avoiding such breakthroughs is a strong predic-
tor of survival during androgen-independent progression [88].
Perachino observed that a TST of 40ng/dL at 6 months was di-
rectly associated with an increased risk of death [91]. Bertaglia
similarly concluded that a TST level below 30ng/dL after 6
months was a positive prognostic factor, although outcomes for
TST levels under 20ng/dL could not be fully evaluated due to
low mortality in this group [87]. The median nadir TST in their
study was 39 ng/dL, significantly higher than our team's median
of 13ng/dL, possibly due to differences in ADT protocols and
patient characteristics, such as ethnicity, cancer stage, and ini-
tial treatments.

Our team retrospectively analyzed data from Japanese patients
who received ADT as their initial PCa treatment [92, 93]. We
found that a nadir TST below 20ng/dL and a reduction of over
480ng/dL were significant prognostic factors [92]. Patients were
grouped by whether they reached this nadir before or after 6
months; however, no difference in overall survival (OS) was ob-
served between the groups. This suggests that achieving a nadir
TST below 20 ng/dL may be more crucial for prognosis than the
rate of decline [93, 94].

Clinical evidence highlights the prognostic value of serum TST
levels in patients undergoing ADT. Significant differences in
time to castration resistance (TCR) were observed among three
serum TST groups (<20, 20-50, and >50ng/dL) [95]. A TST
level <30ng/dL was linked to a significantly lower risk of death
[87], whereas a level of 32 ng/dL was associated with progression-
free survival (PFS) in androgen-independent cases [88].

6 | Serum TST as a Central Determinant in CRPC
Therapy and Emerging TST-Centered Strategies in
PCa

Recent advancements in PCa treatment underscore the criti-
cal role of serum TST not only as a therapeutic target but also
as a biomarker guiding personalized therapy. A multicenter
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retrospective study involving 258 metastatic hormone-sensitive
prostate cancer (mHSPC) patients demonstrated that baseline
TST levels significantly influence TCR and survival outcomes.
Patients were stratified into high and low TST groups using a
12nmol/L cutoff. Results indicated that lower baseline TST was
associated with a shorter TCR (19.0 vs. 22.4months, p=0.031)
and poorer cancer-specific OS, particularly in patients not re-
ceiving upfront combination therapy. These findings suggest
that patients with low baseline TST may benefit from combi-
nation therapy to delay progression to CRPC and improve out-
comes [96].

Serum TST levels also correlate with responses to androgen
receptor (AR)-targeted therapies, offering a potential frame-
work for optimizing CRPC management [97]. Higher TST lev-
els (>13ng/dL) were linked to improved outcomes with novel
AR inhibitors such as enzalutamide and abiraterone, whereas
patients with TST <13ng/dL responded better to chemothera-
pies like docetaxel and cabazitaxel. These findings highlight the
importance of precision medicine in PCa, with TST serving as
a predictive biomarker for treatment selection [98]. Moreover,
BAT, involving high-dose TST supplementation, has shown
promise in re-sensitizing CRPC tumors to AR inhibitors or che-
motherapy through mechanisms such as DNA damage induc-
tion and AR activity inhibition [97, 98].

The transition to a TST-centered approach has further evolved
with clinical evidence from trials like SPARTAN and PROSPER,
which validated the efficacy of modern AR drugs and chemo-
therapies [99]. For patients with TST levels >13ng/dL, AR-
targeting agents, such as enzalutamide demonstrate superior
efficacy, whereas those with TST <13ng/dL benefit more from
chemotherapy, confirming a differential response pattern based
on TST levels [100, 101]. Additionally, pretreatment TST levels
are associated with prognosis and QoL, with higher TST predict-
ing fewer side effects and better outcomes [102, 103].

ADT remains a cornerstone of PCa treatment, but its effects on
TST recovery vary based on factors, such as treatment duration,
baseline TST levels, and patient comorbidities. Studies indicate
thatlonger ADT duration significantly delays TST recovery, with
approximately 50% of patients undergoing ADT for over 2years
remaining castrated for more than 1year post-discontinuation
[104-106]. Luteinizing hormone-releasing hormone (LH-RH)
antagonists enable faster recovery than agonists, and regular
monitoring of TST levels post-ADT is recommended for in-
formed clinical decision-making [107-109]. Notably, nadir TST
levels below 20 ng/dL are associated with improved OS, whereas
patients experiencing a “TST bounce” (nadir TST <20ng/dL
and max TST >20ng/dL) demonstrate enhanced OS and cancer-
specific survival (CSS) [93, 110-112]. These findings emphasize
the need to tailor ADT strategies to optimize TST recovery and
patient outcomes.

The integration of traditional castration therapy with innovative
TST supplementation strategies marks a paradigm shift in PCa
management. This TST-centered approach not only redefines
the role of TST from suppression to dynamic modulation but
also serves as a foundation for precision medicine, paving the
way for transformative treatments and improved outcomes in
PCa patients.

In Table 2, we summarized the guiding effect of serum TST cut-
offs on relevant treatment.

7 | Serum TST and BAT

The term “bipolar” here refers to the rapid cycling of TST levels
from supraphysiologic highs to near-castration lows, repeated
over multiple cycles. CRPC cells with high AR levels cannot fully
degrade the androgen-stabilized nuclear AR and are vulnerable
to cell death when exposed to supraphysiologic TST. High an-
drogen levels also cause lethal double-stranded DNA breaks in
PCa cells that have been chronically androgen-deficient. Cells
that survive high TST due to low baseline AR levels or adap-
tive AR downregulation become susceptible to death when re-
exposed to low TST in the bipolar treatment cycle [113].

Androgens may also initiate a “hit and run” mechanism through
AR, inducing a quiescent state in PCa cells [114]. Thus, by al-
ternating androgen deprivation with supplementation in BAT,
cancer cell dormancy is induced or reinforced, potentially inhib-
iting metastatic progression in early stages.

In PCa, DNA replication is facilitated by AR. In the transition
to metastasized Castration-Resistant Prostate Cancer (mCRPC),
AR protein expression increases dramatically (by 50-100 times).
Nuclear AR in mCRPC cells binds to DNA at origin replication
sites (ORS) during the G1 phase as part of the replication ori-
gin complex (ORC), enabling DNA replication in the S phase.
AR and ORC remain linked from early to late mitosis, and AR
degradation is essential for DNA re-licensing in the next cycle.
However, with TST supplementation, increased ligand binding
stabilizes the ORC-bound AR, preventing full degradation. This
ligand-induced stability halts DNA replication re-initiation,
leading to cell death in subsequent cycles [115-117]. We have
summarized the main mechanisms by which BAT affects PCa
cell growth in Figure 1.

In a Phase 1 clinical trial, high-dose exogenous TST was safely
used to treat CRPC patients. Although no patients achieved
sustained supraphysiological serum TST levels, the study laid
the groundwork for future research directions [118]. Another
randomized Phase I study further confirmed the feasibility and
tolerability of BAT in early CRPC patients, with 20% of patients
experiencing a decline in PSA levels, and no significant impact
on QoL or grip strength [119].

In a third open-label, Phase 2, multi-cohort study, 30% of patients
achieved a PSA50 response following BAT treatment. Most pa-
tients regained sensitivity to enzalutamide upon rechallenge, in-
dicating that BAT could be a safe and effective treatment option
[120]. At last, the Phase II BATMAN study showed that after
6 months of ADT induction, 59% of HSPC patients achieved
PSA levels below 4ng/mL after 18 months of BAT treatment.
Furthermore, the treatment improved patients’ QoL [121].

In Schweizer et al.'s [113] pilot study on BAT, 16 asymptomatic
mCRPC patients received BAT for at least 3 months. Results
showed that 50% experienced a PSA decrease, with 28.6% see-
ing reductions over 50%. Imaging also showed controlled soft
tissue metastases in 10 patients [113]. BAT gave notable benefits
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Mechanisms of BAT in Prostate Cancer
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FIGURE1 | Mechanisms of bipolar androgen therapy in PCa cell growth. This schematic summarizes the complex effects of bipolar androgen

therapy (high-dose androgen) on AR signaling in PCa cells, highlighting its role in transcriptional regulation and growth inhibition. Key pathways

include: S-phase arrest via origin replication sites (ORS): High androgen levels bind AR, inhibiting DNA licensing, inducing S-phase arrest, and pro-

moting degradation of AR-associated complexes. TOP2f-induced genomic breakpoints: AR recruits TOP2f, causing DNA double-strand breaks, in-
cluding TMPRSS2-ERG fusion points. LSDI-mediated repression: AR binding at specific sites (e.g., androgen receptor-binding site 2) suppresses AR
and its variants, limiting cancer progression. GI-phase arrest: AR downregulates MYC and SKP2, inducing G1-phase arrest and degradation of cell
cycle regulators. Transcriptional reprogramming: AR shifts transcription toward differentiation by binding E2F sites, reducing proliferation. During
the progression to mCRPC, AR protein expression increases significantly (by 50-100 times), amplifying these effects.

in lipid profiles, QoL, and body composition, offering long-term
health advantages for mCRPC patients [122]. The RESTORE
study involving 90 patients, reported systemic pain and calf
swelling as common side effects, with hot flashes, breast en-
largement, and breast pain among the typical sexual side effects
[123]. BAT represents a novel therapeutic avenue for CRPC. By
leveraging high doses of TST, BAT induces DNA damage and
inhibits AR activity, enhancing responses to AR-targeted ther-
apies and chemotherapy. Meta-analyses report PSA response
rates of 27%-34% with BAT alone, which increase to 57% when
combined with subsequent treatments [124-126].

Notably, the large TRANSFORMER trial (n=180) compared
PFS, safety, and QoL in asymptomatic mCRPC patients treated
with BAT versus enzalutamide [125]. Results showed that BAT
maintained or improved QoL, particularly in reducing fatigue
and enhancing physical and sexual function. Additionally,
cross-treatment analysis revealed that patients receiving en-
zalutamide after BAT responded significantly better than those
transitioning from abiraterone to enzalutamide. The PSA-PFS
for enzalutamide increased from 3.8 months post-abiraterone to

10.9 months post-BAT, with PSA50 response rates and overall
response rates substantially higher (78% vs. 25% for PSA50, 29%
vs. 4% for OR), suggesting BAT may partially restore AR sensi-
tivity in resistant PC cells [125].

The BATMAN phase II study further demonstrated BAT's ef-
ficacy when alternated with ADT in HSPC. In this study, 76%
of patients remained castration-sensitive after two BAT-ADT
cycles, and five of seven nonresponders later responded to an-
tiandrogen therapy (bicalutamide or enzalutamide) [121]. Other
studies similarly indicate that BAT can reinstate AR sensitivity
in previously resistant CRPC patients [120, 123, 125, 127].

Moreover, BAT combined with enzalutamide may enhance the
clinical response to PD-1 blockade in metastatic mCRPC, poten-
tially improving outcomes with immune checkpoint inhibitors
[128, 129].

Promising directions include combining BAT with radiotherapy
(e.g., prostate-specific membrane antigen [PSMA]-targeted ther-
apy) [130], immunotherapy (e.g., PD-L1 inhibitors) [131, 132], or
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PARP inhibitors like Olaparib [133]. However, challenges such
as hypertension and pulmonary embolism remain, necessitat-
ing further studies to optimize its application. We have summa-
rized the main studies on BAT conducted to date in Table 3 for
ease of reference.

8 | Conclusion

Recent research has deepened our understanding of the rela-
tionship between PCa and androgens, revealing complexities
beyond previous assumptions. Yet, questions remain, particu-
larly around optimal TST dosage and BAT cycles.

Although new hormone therapies, including drugs targeting
BRCA1/2 mutations and PARP inhibitors, have largely replaced
traditional hormone and chemotherapy, serum TST remains a
key factor in determining the efficacy of PCa treatments and in
predicting patient prognosis. Additionally, TST influences PCa
cell proliferation and apoptosis, impacting treatment response
and disease progression.

Currently, no clear guidelines exist, leaving clinicians to rely on
incomplete but available clinical evidence. Although TST may
be necessary in cases, such as successful PCa treatment or ac-
tive surveillance for low-risk disease, extreme caution is advised
for patients with moderate- or high-risk cancer, where benefits
must clearly outweigh potential risks. In clinical practice, serum
TST is a valuable biomarker for guiding treatment decisions and
assessing prognosis, directly influencing outcomes and QoL in
advanced PCa patients, as supported by robust clinical evidence.
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