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 Abbreviations 

AC, Acylcarnitine; AT, Adipose tissue; ATGL, Adipose triglyceride lipase; AICAR, 5-

aminoimidazole-4-carboxamide-1-β-D-ribofuranoside; ASL, Argininosuccinate lyase; ASS, 

Argininosuccinate synthetase; BAT, Brown adipose tissue; Car, Carnitine; CAT, Carnitine-

acylcarnitine translocase; CoA, Coenzyme A; CPT, Carnitine palmitoyltransferase; cNOS, 

Constitutive nitric oxide (NO) synthase (NOS); cAMP, cyclic adenosine monophosphate; CREB1, 

cAMP response element-binding protein 1; cGMP, Cyclic guanosine monophosphate; DAG, 

Diacylglyceride; eNOS, Endothelial NOS; FFA, Free fatty acid; GSIS, Glucose-stimulated insulin 

secretion; GLUT4, Glucose transporter type 4; GLN, Glutaminase; GyK, Glycerol kinase; G3P, 

Glycerol-3-phosphate; HbA1c, Glycated hemoglobin; HDL-C, High-density lipoprotein-

cholesterol; HFD, High‐fat diet; HSL, Hormone-sensitive lipase; HOMA-IR, Homeostasis model 

assessment of insulin resistance; iNOS, Inducible NOS; IL-6, Interleukin-6; KB, Ketone bodies; 

Arg, L-arginine; Cit, L-citrulline; LDL-C, Low-density lipoprotein-cholesterol; MDA, 

Malondialdehyde; MAG, Monoacylglycerol; MGL, Monoglyceride lipase; MCP-1, Monocyte 

chemoattractant protein-1; nNOS, Neural NOS; NMMA, NG-monomethyl-L-arginine; L-NAME, 

Nω-nitro-L-arginine methyl ester; NO, Nitric oxide; NOx, NO metabolites; NEFA, Non-esterified 

fatty acid; Nrf1, Nuclear respiratory factor 1; OAT, Ornithine aminotransferase; OTC, Ornithine 

transcarbamylase; OAA, Oxaloacetate; P5CS, Proline 5 carboxylate synthase; POX, Proline 

oxidase; P5C, Pyrroline 5 carboxylate; AMPK, 5' adenosine monophosphate-activated protein 

kinase; PGC-1α, Peroxisome proliferator-activated receptor-γ (PPAR-γ) co-activator 1α; PKG, 

Protein kinase G; PKA, Protein kinase A; PPARα, Peroxisome proliferator-activated receptor α; 

PEP, phosphoenolpyruvate; PEPCK, phosphoenolpyruvate carboxykinase; RET, Retroperitonea l; 

sGC, Soluble guanylate cyclase; SNP, Sodium nitroprusside; TG, Triglycerides; TLR-4, Toll- like 
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receptor 4; TAC, Total antioxidant capacity; T2D, Type 2 diabetes; UCP1, Uncoupling protein 1; 

VDCC, Voltage-dependent L-type Ca2+ channel; WAT, White adipose tissue; ZDF rat, Zucker 

diabetic fatty rat. 

Glossary 

AMP-activated protein kinase (AMPK): An energy sensor that is activated by nutrient 

deficiency and stimulates glucose uptake and lipid oxidation to produce energy. AMPK regulates 

cellular metabolism. 

Argininosuccinate lyase (ASL): One of the enzymes of the urea cycle and citrulline-arginine 

cycle that catalyzes the reversible cleavage of L-argininosuccinate to fumarate and L-arginine; an 

intermediate step reaction for de novo L-arginine synthesis in non-hepatic tissues. 

Argininosuccinate synthase (ASS): One of the enzymes of the urea cycle and citrulline-arginine 

cycle that catalyzes the formation of argininosuccinate from aspartate, citrulline, and ATP, and 

together with ASL, it is responsible for the biosynthesis of arginine in most body tissues. 

Cyclic guanosine monophosphate (cGMP): A cyclic nucleotide produced from guanosine 

triphosphate (GTP) by guanylyl cyclase and acts as a second messenger.  

Glucose transporter 2 (GLUT2): A transmembrane carrier protein that facilitates glucose 

transport across membranes. It helps glucose uptake by the hepatocytes for glycolysis and 

glycogenesis and by pancreatic β-cells for stimulating insulin secretion. It also regulates the release 

of glucose from the liver cells into circulation during gluconeogenesis.  

Glucose transporter 4 (GLUT4): An insulin-regulated glucose transporter founds primarily in 

the adipose tissues and skeletal muscle.  

cGMP-dependent protein kinase G (PKG): A serine/threonine protein kinase activated by 

cGMP. 
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Interleukin (IL)-6: An interleukin produced at the site of inflammation and plays a key role in 

the acute phase response. 

KATP channel: An ATP-sensitive potassium channel and metabolic sensor that couples cellular 

metabolism to electrical activity. It regulates glucose-stimulated insulin secretion (GSIS) in the 

pancreatic β-cells and is a target for sulfonylurea antidiabetic drugs. 

Nitric oxide (NO): A colorless and odorless gas soluble in aqueous and organic solvents and acts 

as a biological molecule.  

Nitric oxide synthase (NOS): Enzyme that produces NO for L-arginine. In mammals, NO is 

generated by three different isoforms of the enzyme NO synthase, viz., neuronal nNOS (NOS-I), 

inducible iNOS (NOS-II), and endothelial eNOS (NOS-III). 

NO synthase (NOS) inhibitors: Pharmacologically active substances that inhibit NOS enzymes 

and, thus, NO production. The most common NOS inhibitors are L-arginine analogs [e.g., NG nitro-  

L-arginine methyl ester (L-NAME), L-NG-monomethyl L-arginine (L-NMMA), and nitro-L-

arginine (L-NNA)], which are competitive and nonselective inhibitors of NOS. Some NOS 

inhibitors are selective; for example, 7-nitroindazole (7-NI) is a specific nNOS inhibitor, and 

aminoguanidine is a selective iNOS inhibitor. 

S-Nitrosylation: A post translational modification refers to the addition of NO to a reactant (e.g., 

cysteine residues of a protein). 

Soluble guanylyl cyclase (sGC): A heterodimeric (α and β subunits) heme protein that acts as the 

NO receptor; NO activates sGC and produces 3΄,5΄-cGMP, which actives PKG (NO-sGC-PKG 

signaling pathway). 
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Voltage-dependent L-type Ca2+ channels (VDCCs): A subset of voltage-gated ion channels 

found in the membrane of excitable cells (e.g., pancreatic β-cells) providing permeability to 

calcium ions. 
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Abstract  

The prevalence of type 2 diabetes (T2D) is increasing worldwide. Decreased nitric oxide (NO) 

bioavailability is involved in the pathophysiology of T2D and its complications. L-citrulline (Cit), 

a precursor of NO production, has been suggested as a novel therapeutic agent for T2D. Availab le 

data from human and animal studies indicate that Cit supplementation in T2D increases circulat ing 

levels of Cit and L-arginine while decreasing circulating glucose and free fatty acids and improving 

dyslipidemia. The underlying mechanisms for these beneficial effects of Cit include increased 

insulin secretion from the pancreatic β-cells, increased glucose uptake by the skeletal muscle, as 

well as increased lipolysis and β-oxidation, and decreased glyceroneogenesis in the adipose tissue. 

Thus, Cit has antihyperglycemic, antidyslipidemic, and antioxidant effects and has the potential to 

be used as a new therapeutic agent in the management of T2D. This review summarizes available 

literature from human and animal studies to explore the effects of Cit on metabolic parameters in 

T2D. It also discusses the possible mechanisms underlying Cit-induced improved metabolic 

parameters in T2D.  

Keywords: Carbohydrate metabolism, L-citrulline, nitric oxide, pancreatic β-cell, skeletal 

muscle, type 2 diabetes.  
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1. Introduction 

The prevalence of diabetes mellitus in the adult population has increased from 151 to 537 million 

during the first two decades of the 21st century and is estimated to reach 783 million by the year 

2045.1 About 90–95% of all people with diabetes have type 2 diabetes (T2D), characterized by 

insulin resistance and β-cell dysfunction.2 Currently, various treatments are available for T2D, but 

unfortunately, most have insufficient efficacy.3 For example, the effectiveness of antidiabet ic 

drugs for achieving glycemic control is only 41%, emphasizing the need for further investigat ions 

to provide more efficient treatments.4 In addition, it has been suggested that the treatment approach 

to T2D needs to be changed from only a glycemic control to a pathophysiological-based approach, 

which also includes managing lipids, blood pressure, and obesity.5 

Endothelial dysfunction, mainly characterized by decreased nitric oxide (NO) bioavailability, is 

involved in the pathophysiology of T2D.6 NO is produced from the L-arginine (Arg)-NO synthase 

(NOS) and the nitrate-nitrite-NO pathways.7 Decreased endothelial NOS (eNOS)-derived NO, 

increased inducible NOS (iNOS)-derived NO,8,9 and impaired nitrate-nitrite-NO pathway10 have 

been reported in T2D. Results from human studies on polymorphisms in NOS genes, genetica lly 

altered animals, and pharmacological studies support the involvement of disturbed NO 

homeostasis in developing T2D.10 Obtained data indicate that NO produced by constitut ive 

isoforms of NOS (cNOS), i.e., eNOS and neural NOS (nNOS), increases insulin secretion and 

sensitivity10, increases skeletal muscle glucose uptake,11 and decreases hepatic glucose output.12  

In contrast, iNOS-derived NO increases insulin resistance and leads to the development of T2D.9 

In addition, NO-releasing drugs can improve carbohydrate metabolism in T2D, and the NO system 

partially mediates favorable metabolic effects of some antidiabetic medications (e.g., 

metformin).13,14 Therefore, boosting the NO system may have therapeutic effects on T2D.15-17 One 
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strategy for NO boosting is enhancing endogenous NO synthesis,18 which can be achieved by 

administration of Arg,19,20 nitrate/nitrite,21,22 and L-citrulline (Cit).23 

Results of clinical and experimental studies indicate that Arg, an NO precursor, has benefic ia l 

effects on T2D19,24-28 and improves endothelial20,24 and β-cell29,30 function and glucose tolerance.3 1  

However, Arg does not affect fasting glucose and hemoglobin A1c (HbA1c) levels in patients with 

T2D.32,33 In addition, it has undesirable side effects, including induction of arginase activity,3 4  

enhancing inflammatory and immunologic responses,35-37 and increasing mortality in patients with 

myocardial infarction.38 

Inorganic nitrate and nitrite supplementation to boost the nitrate-nitrite-NO pathway have shown 

promising metabolic effects in animal models of T2D.10,39-41 These anions increase insulin 

secretion from the β-cells15,42,43 and improve glucose utilization at the periphery.44-48 However, 

this has not been the case in human studies where nitrate or nitrite was ineffective in improving 

metabolic disorders;49,50 for details, see a recent review.51 In addition, a high intake of nitrate and 

nitrite may increase the risk of β-cell autoimmunity and type 1 diabetes.52 

Cit, a precursor of Arg de novo synthesis and NO production,53 has a highly efficient intestina l 

absorption rate, low first-pass metabolism, and high renal reabsorption. These characteristics that 

make Cit a good candidate for NO boosting in NO-disrupted conditions, including diabetes.54 In 

addition, it is needed to manage other comorbidities, including obesity, dyslipidemia, and 

hypertension in patients with T2D.55 This increases the prevalence of polypharmacy, using greater 

than 5 drugs/day, as reported to be 57% to 84% in patients with T2D.56,57 Polypharmacy is 

associated with increased drug side-effects58 (e.g., higher risk of bone fracture and depression59), 

lower quality of life, and higher healthcare costs.60 The therapeutic effects of Cit against oxidative 

stress, hyperglycemia, hypertension, hypertriglyceridemia, hypercholesterolemia, and insulin 
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resistance have been reported in experimental61-64 and clinical studies65-71 in both male61-64,66-71 and 

females.67-71 Therefore, Cit can potentially act as a one-drug-multi-target agent in patients with 

T2D. In this review, we first summarize the effects of Cit on metabolic parameters in T2D and 

then discuss the possible mechanisms that underlie such improved outcomes.  

2. L-citrulline metabolism  

Cit is a non-essential and non-protein amino acid in humans;54 it was extracted in 1914 from 

watermelon by Koga and named in 1930 by Wada according to the Latin name of watermelon, i.e., 

Citrullus Colocynthis.72 Watermelon is the main dietary source of Cit; the concentration of Cit in 

watermelon ranges between 0.7 and 3.6 g/kg of fresh weight.73,74 However, diet is a poor source 

of Cit, and the main source (60–80%) of the human body Cit is endogenous synthesis from 

glutamine75,76 (Table 1). The main site of Cit synthesis (60-90%) in humans is the small intestina l 

enterocytes.77,78 Arg (20-40%) and proline (~3%) have lower contributions in Cit synthesis in the 

human enterocytes. As shown in Figure 1, human enterocytes take up precursor amino acids for 

Cit biosynthesis via apical and basolateral membranes. Within the enterocytes, glutamine is 

converted to glutamate by glutaminase (GLN); pyrroline 5 carboxylate synthase (P5CS) and 

proline oxidase (POX) convert glutamine and proline to pyrroline 5 carboxylate (P5C), which is 

then converted to ornithine by ornithine aminotransferase (OAT). Arginase converts Arg to 

ornithine, which is converted to Cit by ornithine transcarbamylase (OTC); Cit then enters the 

circulation and can be taken up by other cells.79,80 Kidneys are the main site of Cit metabolism in 

the human body, metabolizing up to 80% of the Cit produced in the small intestinal enterocytes. 

Kidneys take up about 1.5 g of Cit/day from the circulation,81 and high plasma Cit levels may 

reflect renal disorders.82 Cit bypasses splanchnic extraction,83 and its first-pass metabolism is 

negligible;84 thus, the intestine and the liver have no major contribution to Cit metabolism.   
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Cit metabolism shows sex- and species differences (Table 1). Overall, the mean plasma Cit 

concentration is 20–50 μM in healthy adults.85-89 However, adult women have slightly lower 

circulating Cit than men,88,89 which is attributed to higher glucose-mediated insulin output in 

women.89 In addition, compared to men, women have lower Cit plasma flux, lower Arg/Cit and 

higher Cit/nitrite ratios in RBC and serum,90 higher NOS-dependent NO production,90 and higher 

whole-body NO biosynthesis.91 Furthermore, the systolic- and diastolic blood pressure-lowering 

effect of Cit is higher in women,92,93 which is partially explained by the higher activity of the 

enzymatic machinery involved in Cit metabolism. In men, following administration of Cit (2-15 

g), it is distributed in a volume of 15.2-17.2 L, and its plasma concentration rapidly (Tmax=38-56 

minutes) reaches a maximum level (Cmax=515-3849 µM).94 In women, Cmax (386-1069 µM) of Cit 

is lower, but it’s Tmax (60 minutes) is slightly higher than in men, as measured after administra t ion 

of 7 g Cit.95 However, some pharmacokinetic parameters of Cit metabolism have not been reported 

in women, an issue that warrants further investigation, as highlighted previously.96 

Female mice have higher serum Cit concentration than males;97,98 this is due to higher endogenous 

Arg synthesis (by ~42%)97 and flux (by ~6%)97 as well as higher serum (147±17 vs. 106±14 μM) 

,99 kidney (440±79  vs. 263±88 μmol/kg)99 and skeletal muscle (728±220  vs. 367±37 μmol/kg)9 9  

Arg concentrations in females. In addition, compared to males, Cit plasma flux,97,100 Cit renal 

clearance,97 rate of Cit conversion to Arg,97 and rate of Arg conversion to Cit97 as well as arginase 

activity in the pancreas (0.43±0.04 vs. 0.34±0.1 μmol/mg/min)97 and kidney (0.49±0.04 vs. 

1.1±0.08 μmol/mg/min)97 are higher in female mice. Female mice also produce more NO than 

males.97,101 

Considering species differences in Cit metabolism (Table 1), the main source of Cit production is 

glutamine in humans79,100 but proline in rodents.102-104 In addition, compared to humans, values of 
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endogenous production,85,104 plasma concentration,88,89,97 plasma flux,85,97,100,105,106 renal 

clearance,97,107 and half-life of Cit78,94 are higher in rodents. Furthermore, rates of Cit conversion 

to Arg97,105,106,108 and Arg conversion to Cit97,105,106 are also higher in rodents. Differences have 

also been reported between rats and mice; male rats have higher serum Cit (64.6±7.8109 and 

70.0±8.0110 vs. 40±597 μM) and plasma Cit flux (197±11100 vs. 95.4±29.197 and 81.1±4.7100 

μmol/kg/h) than males mice. Furthermore, a higher rate of NO production was reported in mice 

(7.68±1.47 μmol/kg/h) than in rats (0.55±0.05 μmol/kg/h).111   

2.1. Cit-Arg cycle 

The only known fate of Cit is its conversion to Arg via Cit-Arg cycle,77 and the therapeutic 

applications of Cit are mainly based on the capacity to increase Arg availability for NO 

production.112 In the Cit-Arg cycle, Cit is metabolized to argininosuccinate by argininosuccinate 

synthetase (ASS), which is then metabolized to Arg by argininosuccinate lyase (ASL). Finally, 

different isoforms of the NOS enzymes (eNOS, nNOS, and iNOS) metabolize Arg to NO and 

Cit.113 Arginase, which metabolizes Arg to urea and ornithine, competes directly with NOS for 

Arg; hence, increased arginase activity can decrease Arg levels, reducing its availability to NOS 

and, thus, decreasing NO production in T2D.114 Then, ornithine is converted back to Cit by OTC 

to start the cycle again. The enzymatic machinery necessary for the Cit-Arg cycle is found in most 

cells,83 including pancreatic β-cells,115 skeletal muscle cells,116 and adipose cells117 of rats115,117 

and humans116 (Figure 1).  

Expressions of ASS and ASL have been documented in the β-cells of male Wistar rats,115 

diaphragm and gastrocnemius muscles of male118,119 and female119 Sprague-Dawley rats, and 

retroperitoneal (RET) adipose tissue (AT) of young (but not old120) male Sprague-Dawley rats.117 

All three NOS isoforms are expressed in the pancreatic β-cells; eNOS,115,121-124 nNOS,115,121,125-128 
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and iNOS126,129 expressed in islet β-cells of humans,127 Wister rats,122,125 Sprague–Dawley 

rats,126,129 Zucker diabetic fatty (ZDF) rats,127 db/db mice,123 NMRI mice,130 INS-1E cell line,12 8  

Min6 cell line,124 and HIT T15 cells, an insulinoma cell line.121 Although controvesioal,131 it seems 

that nNOS and, to a lesser extent, eNOS play the major role in regulating insulin secretion in the 

pancreatic β-cells.10 In the skeletal muscle cells, nNOS is the predominant source of NO116 and the 

most relevant NOS isoform involved in glucose uptake.132 The predominant or probably the only 

cNOS isoform expressed in white adipose tissue (WAT) and brown adipose tissue (BAT) seems 

to be Enos.133,134 In BAT, eNOS is located in the cytoplasm of adipocytes.135 The iNOS isoform is 

found in both BAT and WAT136 and is localized in adipocytes and other cells, such as 

proinflammatory macrophages.137 

Little is known about the kinetic of the enzymes involved in the Cit-Arg cycle; however, in the rat 

liver, Vmax (µmol/min/mg protein) and Km (mM) for ASS, ASL, and eNOS have been reported to 

be 0.009 and 1.25,138 0.009 and 0.24,139 and 1 and 0.003, respectively.140 

In addition to synthesis in cells, Cit may enter the cells from circulation. Neutral amino acids such 

as Cit use distinct transport systems in different cells,141 including a saturable but nonselect ive 

neutral carrier in macrophages,142 a Na+-independent transport system in vascular smooth muscle 

cells,143 a Na+-dependent uptake mechanism via the system B0,+ in human intestinal epithelia l 

cells,144 and large neutral amino acid transporter 1 in the brain capillary endothelial cells.141  

However, no evidence indicates the presence of a Cit-specific transport in β-cells, skeletal muscle, 

and AT.83  

3. Circulating concentrations of L-citrulline in T2D 

Data on circulating levels of Cit in patients with T2D is not consistent, as both increased90,145-148 

and decreased149-152 levels have been reported (Table 2). Data presented in Table 2 favor increased 
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mean Cit concentrations (~15%) in patients with T2D compared to healthy subjects (36.4 μM vs. 

31.8 μM). High circulating Cit in patients with T2D is attributed to small intestine hyperplasia and 

hypertrophy in the presence of insulin resistance,146,147 considering that about 80-90% of the Cit is 

derived from enterocytes.153 On the other hand, low circulating Cit levels in patients with T2D 

may be due to increased arginase activity150 and decreased eNOS activity,149,150 resulting in the 

lower conversion of Arg to Cit.149,150 Data on circulating Cit concentrations in animals is also 

scarce, and lower plasma concentration (60±7.3 vs. 47±4.1 μM, p<0.05) has been reported in male 

ZDF rats.154 

4. Metabolic effects of L-citrulline in T2D 

Cit increases insulin secretion from the pancreatic β-cells,115 improves insulin sensitivity,155 and 

has antihypertensives,61-63 antihyperglycemic,61 antidyslipidemic,61,64 and antioxidant65 effects. In 

vitro studies indicate that Cit (100 μM) increases insulin release in the presence of 8.3 mM glucose 

from isolated islets of Wistar rats.115 

In vivo animal studies indicate that Cit administration in T2D increases circulating NO metabolites 

(NOx), Cit, and Arg concentrations,156,157 increases plasma insulin levels,158 decreases circulat ing 

glucose61,156 and free fatty acid (FFA),156 and improves dyslipidemia61 (Table 3). Administra t ion 

of watermelon juice, a rich source of Cit, to male ZDF rats for 4 weeks decreased serum glucose 

by ~22% (410.8 ± 8.1 vs. 320.7 ± 10.3 mg/dL, P<0.05) and serum FFA by ~18% (1.53±0.07 vs. 

1.26±0.08 mM, P<0.05).156 Cit administration to type 2 diabetic male Wistar rats at doses of 200, 

400, and 800 mg/kg, significantly lowered fasting serum glucose from 210.5±3.9, 214.5±7.6, and 

201.3±1.5 on day 0 to 192.5±3.4, 181.8±1.2, and 174.8±2.8 mg/dL on day 22, respectively.61 In 

addition, Cit (400 mg/kg for 21 days) markedly decreased concentrations of total cholesterol (TC, 

149.8±2.7 vs. 57.8±1.2 mg/dL P<0.05), triglycerides (TG, 141.8±2.3 vs. 13.2±0.6 mg/dL, P<0.05), 

 17481716, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/apha.13937 by H

ealth Science C
enter, W

iley O
nline L

ibrary on [23/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



 
   

low-density lipoprotein-cholesterol (LDL-C, 85.3±1.7 vs. 26.1±1.0 mg/dL, P<0.05), and increased 

high-density lipoprotein-cholesterol (HDL-C, 24.6±1.1 vs. 58.8±0.5 mg/dL, P<0.05) levels in type 

2 diabetic male Wistar rats.61 Kudo et al. showed that Cit supplementation (500 mg/kg for 11 

weeks) to high‐fat diet (HFD)-fed male Sprague Dawley rats decreased TC (58.2±5.6 vs. 40.1±8.2  

mg/dL, P<0.01), insulin (19.8±3.5 vs.11.7±2.1 ng/mL, P<0.05), and homeostasis model 

assessment of insulin resistance (HOMA-IR, 8.0±1.5 vs. 4.3±1.4, P<0.05) but does not affect 

fasting serum glucose, TG, and FFA levels155, suggesting improvements in insulin sensitivity.155 

Regarding human studies (Table 3), results of a randomized, double-blind, placebo-controlled 

clinical trial of 45 patients (males and females) with T2D indicated that Cit supplementation (3000 

mg/day for 60 days) increased serum Cit concentrations by more than 2-fold (13.4±8.6 vs. 

30.5±12.4 µM, P<0.001) and decreased fasting serum glucose (157.9±41.7 vs. 134.9±32.2 mg/dL, 

P<0.001) and HbA1c (7.2±1.2 vs. 6.6±1.35%, P=0.003) but had no effects on serum insulin, 

interleukin-6 (IL-6), serum monocyte chemoattractant protein-1 (MCP-1), and serum toll- like 

receptor 4 (TLR-4).159 In addition, in these patients, Cit decreased serum malondialdehyde (MDA, 

1.98±0.66 vs. 1.48±0.47 µM, P<0.001) and increased serum total antioxidant capacity (TAC, 

1.26±0.17 vs. 1.54±0.18 mM, P<0.001) and NOx (1.76±0.63 vs. 2.25±0.70 µM, P<0.001).65 Cit 

(2, 5, 10, and 15 g) did not affect plasma insulin levels in eight healthy young men.94,160 In addition, 

Cit supplementation (2000 mg/day for 30 days) decreased arginase activity by 21% and increased 

plasma NO levels by 38% in men and women with T2D. Additionally, these patients had a modest 

but not statistically significant improvement in HbA1c levels.161 

4.1. Dose and safety of Cit  

Cit has been administrated in doses ranging from 2.7-15 g/day in humans and 0.05-5.7 g/kg in 

rodents. These clinical and experimental studies showed that Cit has antihyperglycemic,61,162  
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antidyslipidemic,61 anti-obesity,155 anti-inflammatory,163 anti-oxidative stress,159 and 

renoprotective163 effects as well as increases serum insulin,162 improves glucose tolerance,164 and 

increases protein synthesis in the skeletal muscle.158 In human studies, doses of 2.7,68 3,67,71,165 

3.4,166 6,66,69,167,168 8,169 10,107 and 15 g/day have been used as a single bolus dose94 or for durations 

of 7,71,165 8,169 14,166,168 28,66 42,68,69 and 5667,167 days. However, high doses of Cit (15 g/day) have 

a lower fractional absorption rate because of the saturation of the Cit transporters and lower 

conversion of Cit to Arg.112 Hence, Cit at 10 g/day has been suggested for clinical use.94 In 

addition, for increasing circulating Arg concentrations, doses of Cit as low as 3 g/day are 

effective.53 Thus, it has been suggested that the minimum and maximum effective doses of Cit for 

treating cardiometabolic disorders in humans are ~3 and 10 g/day, respectively.112 In rodents, doses 

of 0.05,163 0.2,61 0.3,170 0.4,61 0.5,155 0.6,164,170 0.8,61 0.9,170-172 1,155 5,158 and 5.7173 g/kg have been 

used for durations of 7,158,170-172 14,163 21,61 28,156,162 56,169 63,155,173 77,155 and 105164 days in male 

mice,155,163,164,173 male rats.61,155,156,158,170-172 

Literature indicates that doses as high as 15 g/day94 and 5.7 g/kg173 are well tolerated in humans 

and animals, respectively. In a clinical trial, Cit (15 g/day for two weeks) was used for restoring 

NO bioavailability of airways in obese subjects with asthma; some side effects, including mild to 

severe nausea (12-41%), headache (17-44%), lightheadedness (3-20%), and diarrhea (13%) have 

been reported. All of these side effects lasted for 2-3 days after the initial use.174 However, 

regarding Cit safety, some points deserve further attention. First, administration of Cit (2 g/kg/day 

for 16 days) in rats during the pre-weaning stage disturbed lipid profiles during adulthood.175 Thus, 

the safety of using Cit during the early stages of life needs to be further investigated. The second 

point about the safety of Cit is the short-term duration of Cit administration in both human (up to 

56 days67,167) and animal (up to 105 days164) studies. Therefore, long-term studies are warranted. 
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Finally, Cit may interact with some drugs used for managing hypertension, T2D, and 

cardiovascular diseases; for example, metformin affects Cit metabolism176-178 so that, following 

metformin therapy, plasma Cit concentrations are lower in diabetic patients and mice.176 

 

5. Mechanisms underlying beneficial effects of L-citrulline in T2D 

5.1. Increased insulin secretion  

As shown in Figure 2, the possible mechanisms explaining the stimulatory effect of Cit on glucose-

stimulated insulin secretion (GSIS) include (1) activation of voltage-dependent L-type Ca2+ 

channels (VDCCs) via (a) inhibition of KATP channels and (b) increases in intracellular cyclic 

guanosine monophosphate (cGMP); (2) stimulation of insulin gene promoter; (3) S-nitrosyla t ion 

of glucokinase; and (4) promotion of mitochondrial ATP production by the coupling of the Cit-

Arg cycle to the Krebs cycle via the malate-aspartate shuttle.  

Cit causes an NO-induced increase in [Ca2+]i in β-cells; in support of this notation, it has been 

shown that exposing Wistar rat β-cells to Cit (100 μM) increases [Ca2+]i by 77%, which is inhib ited 

by NOS inhibition121 and in Ca2+-free conditions.115 In addition, exposing rat β-cells to Cit (100 

μM) increases insulin secretion by 58% in the presence of 8.3 mM glucose that is completely 

blocked by NG-monomethyl-L-arginine (NMMA).115 NO increases [Ca2+]i levels through 

inhibition of KATP channels and subsequent membrane depolarization, leading to the opening of L-

type VDCCs.179 In addition, NO activates soluble guanylate cyclase (sGC) and increases 

intracellular cGMP,180 which causes Ca2+ influx through VDCC as increases in the [Ca2+]i is 

abolished by Ca2+ channel blockers.181 

In addition to increasing [Ca2+]i, NO stimulates insulin gene promoter and insulin mRNA 

expression in the pancreatic β-cells.182 NO increases endogenous insulin gene expression in Min6 
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cells and isolated pancreatic islets of rats.182 We previously reported that nitrite, an NO donor, 

increases insulin mRNA expression43 and insulin content15 in the isolated pancreatic islets of male 

T2D Wistar rats and thus increases GSIS. In addition, S-nitrosylation of glucokinase (at cysteine-

371) is another mechanism by which NO facilitates GSIS.183 In this line, it has been reported that 

nitrite increases glucokinase mRNA expression in isolated islets in male T2D Wistar rats.43  

It has been suggested that the Cit-Arg cycle is coupled to the Krebs cycle via the malate-aspartate 

shuttle.121 The conversion of L-argininosuccinate to Arg is associated with the formation of 

fumarate in the cytosol; fumarate enters the Krebs cycle in the mitochondrion, where it is converted 

into malate by the enzyme fumarase and then participates in ATP production.121 Fumarate (from 

the Cit-Arg cycle) and pyruvate (from glycolysis of phosphorylated glucose) increase ATP 

production in the Krebs cycle, which closes KATP channels and increases insulin secretion from 

pancreatic β-cells. In β-cells, KATP channels are the primary determinants of membrane 

depolarization and the subsequent activation of L-type Ca2+ channels. This results in the elevation 

of [Ca2+]i, followed by insulin release into the circulation.184  

Overall, most stimulatory effects of Cit on insulin secretion are reported to be NO-dependent, but 

little is known about its NO-independent effect; this issue warrants further study. NO-independent 

effects of Arg, including improved atherosclerotic cardiovascular disease185-187, immune 

function188,189, wound healing190,191, and decreased carcinogenesis and tumor growth192,193 have 

been reported in humans previously. 

5.2. Improved peripheral glucose metabolism  

5.2.1. Skeletal muscle 

Cit increases glucose uptake in the skeletal muscle by several NO-dependent mechanisms (Figure 

3): (1) increased gene expression of glucose transporter type 4 (GLUT4) by phosphorylation of 5' 
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adenosine monophosphate-activated protein kinase (AMPK), (2) enhanced GLUT4 translocation 

from the cytosol to the cell membrane by (a) its phosphorylation and (b) S-nitrosylation, (3) 

increased mitochondrial biogenesis by increasing mRNA expression of peroxisome proliferator-

activated receptor-γ (PPAR-γ) co-activator 1α (PGC-1α), a transcription factor for mitochondr ia l 

biogenesis, and nuclear respiratory factor 1 (Nrf1). 

In the skeletal muscle, NO binds to the heme group on sGC, produces cGMP, and subsequently 

activates protein kinase G (PKG) (sGC–cGMP-PKG signaling pathway).194 PKG phosphorylates 

AMPK and the phosphorylated AMPK translocate to the nucleus and increases mRNA expression 

of GLUT4.15,16,44,195 NOS inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME), prevents 5-

aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR)-induced AMPK activation and 

GLUT4 mRNA expression by 38% and 92%, respectively in rat L6 myoblasts; this implies that 

NOS activity is required upstream to AMPK for Cit-induced glucose uptake in the skeletal 

muscle.195 In addition, sodium nitroprusside (SNP), an NO donor, raises cGMP levels and 

increases glucose uptake,196 whereas LY-835, an sGC inhibitor, prevents the increase in cGMP 

and glucose uptake.194 PKG also phosphorylates GLUT4 and increases GLUT4 translocation from 

the cytosol to the plasma membrane.197 NO-mediated translocation of GLUT4 and glucose uptake 

in the skeletal muscle also occurs through a cGMP-independent pathway10 by S-nitrosylation of 

proteins involved in GLUT4 translocation.197  

Cit also improves carbohydrate metabolism in the skeletal muscle by increasing mitochondr ia l 

biogenesis. Administration of Cit for 15 days at a dose of 250 mg/kg dissolved in water increased 

PGC1-α mRNA and protein expressions in the hind and forelimb muscles in mice.198 This effect 

appears to be NO-dependent as Cit (50 µM)-induced upregulation of PGC-1α expression in C2C12 

myotubes was suppressed by 98% in the presence of the NOS inhibitor (L-NAME, 100 µM).198 
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NO activates sGC to generate cGMP, which activates protein kinase A (PKA).199 PKA 

phosphorylates Cyclic adenosine monophosphate (cAMP) response element-binding protein 1 

(CREB1), allowing its nuclear translocation and activation of the PGC1-α and Nrf1 gene 

expression.200 Increased expression of PGC1-α and Nrf1 increases mitochondrial biogenesis.201 6-

day treatment of rat L6 myoblasts with NO donor, (Z)-1-[2-(2-aminoethyl)-N-(2-

ammonioethyl)amino]diazen1- ium-1,2 diolate, (50 μM) increased mRNA expression of PGC-1α 

and Nrf1; this effect is mediated via the sGC-cGMP pathway since 8 Br-cGMP (3 mM) mimicked 

NO effects and 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (1 μM), an sGC inhibitor, abolished 

it.199  

5.2.2. Adipose tissue 

As shown in Figure 4, the effects of Cit on AT include: (1) stimulating lipolysis by increasing 

phosphorylation of hormone-sensitive lipase (HSL), (2) inducing fatty acid β-oxidation by 

increasing expression of carnitine palmitoyl-transferase 1 (CPT1), (3) decreasing 

glyceroneogenesis by reducing expression of cytosolic phosphoenolpyruvate carboxykinase 

(PEPCK), and (4) inducing thermogenesis by increasing the uncoupling protein 1 (UCP1) 

expression.  

Cit increases lipolysis in AT by increasing the phosphorylation of HSL. In mammalian lipolys is, 

three lipases act in sequence with the concomitant release of one FFA in each step; adipose 

triglyceride lipase (ATGL) converts TAG to diacylglyceride (DAG),202 which is hydrolyzed to 

monoacylglycerol (MAG) by HSL; monoglyceride lipase (MGL) cleaves MAG into glycerol and 

FFA.203 Cit (2.5 mM) promotes HSL phosphorylation and induces non-esterified fatty acid 

(NEFA) release by about twofold in the incubation medium,117 i.e., it increases lipolysis.117,120 This 

effect is NO-dependent since when RET AT was pretreated with L-NAME (1 mM for 30 minutes), 

 17481716, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/apha.13937 by H

ealth Science C
enter, W

iley O
nline L

ibrary on [23/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



 
   

Cit-induced HSL phosphorylation and NEFA release were significantly reduced.117 Cit also 

increases glycerol kinase (GyK) expression by threefold in Cit (2.5 mM)-treated RET AT from 

HFD-fed male Sprague Dawley rats.117 However, GyK probably would not be active in the 

mobilization of adipose triglyceride stores in the normal animals.204,205 

Fatty acids are activated for β-oxidation via conjugation with coenzyme A (CoA) in the cytosol.206  

The long-chain fatty-acyl-CoA is esterified with carnitine (Car) to produce acylcarnitine (AC) by 

the enzyme CPT1, which resides on the mitochondrial outer membrane.207,208 AC is then 

transported across the mitochondrial inner membrane by carnitine-acylcarnitine translocase 

(CAT); then CPT2, located on the inner aspect of the mitochondrial inner membrane, converts the 

long-chain AC back to long-chain fatty acyl-CoA and carnitine.209 The acyl-CoA then goes 

through β-oxidation to produce acetyl-CoA and carnitine; the latter is transported out.206 If the flux 

of acetyl-CoA is greater than what the TCA cycle can handle, ketone bodies (KB) accumulate, a 

condition often seen in uncontrolled diabetes. Cit (2.5 mM) increases CPT1-b gene expression in 

the RET AT of HFD-fed male Sprague Dawley rats117 and 3T3-F442A adipocytes.120 This effect, 

at least in part, is mediated by an increase in Cit-induced PPARα gene expression as reported in 

RET AT and 3T3-FAA2A adipocytes;120 the evidence for this notion is that Cit-induced CPT1 

gene expression decreases in the PPARα knockout mice.210,211 PPARα activates the transcript ion 

of genes involved in fatty acid transport and mitochondrial β-oxidation.212  

Regarding the effects of Cit on CPT1-b,117,120 it should be noted that the authors only measured 

gene expression, which does not necessarily translate into protein expression and enzyme activity. 

The increase in FA oxidation observed could be due to peroxisomal FA oxidation, a possibility 

that was not considered. Furthermore, the authors worked with frozen tissue, thus exposing both 

CPT1 and CPT2 in their preperations.209 
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Cit decreases glyceroneogenesis, the de novo synthesis of glycerol-3-phosphate (G3P) from 

precursors other than glucose and glycerol (i.e., pyruvate and lactate), by decreasing gene 

expression of PEPCK. Cit (2.5 mM) attenuated glyceroneogenesis flux (80%) in RET AT of HFD-

fed male Sprague Dawley rats.117 Glyceroneogenesis has been suggested as a potential pathway 

for G3P formation in AT.213 G3P is required as a substrate for fatty acid re-esterification into 

triacylglycerol.214 During fasting, about 30-50% of NEFAs derived from lipolysis are immedia te ly 

re-esterified into newly synthesized triacylglycerol in AT of male Sprague Dawley rats and 

humans.215,216 PEPCK, which catalyzes the GTP-dependent oxaloacetate (OAA) decarboxylat ion 

to phosphoenolpyruvate (PEP), is a key regulatory enzyme in glyceroneogenesis.217 Cit-induced 

decrease in glyceroneogenesis is done by increasing NO, which decreases gene expression of 

PPARγ.218,219 A 24-hour exposure to Cit reduced PEPCK protein by 48% in rat AT in an NO-

dependent manner as L-NAME (10 mM) abolished it.117 PPARγ is the main transcriptiona l 

activator of PEPCK expression in adipocytes, so the decrease in PPARγ decreases PEPCK 

expression and glyceroneogenesis.220 In support, Cit (2.5 mM) decreases PPARγ gene expression 

(86%) in RET of male Sprague Dawley rats.221 In summary, Cit decreases glyceroneogenesis by 

promoting NO synthesis, decreasing PPARγ and, thereby, PEPCK.  

Cit increases thermogenesis in adipocytes by increasing the UCP1 expression, which uncouples 

oxidative phosphorylation and ATP production, dissipating energy as heat.222 Following a 24h Cit 

exposure (2.5 mM), UCP1 protein was upregulated by 53% in RET AT of male Sprague Dawley 

rats.221 Cit effect on UCP1 gene expression is supposedly transcriptional through a PPARα/PGC-

1α -process since this couple was demonstrated to act as an inducer of the UCP1 gene in rodents 

and humans.223,224 PPARα, as a direct activator of PGC-1α, is necessary for full thermogenic 

activation of PGC-1α gene transcription in BAT.223,225 PGC-1α is a transcriptional co-activator 
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involved in controlling energy metabolism in BAT that plays a critical role in inducing UCP1 gene 

expression.226 Cit (2 mM) induces PGC-1α and PPARα gene expressions in RET AT of male 

Sprague Dawley rats,221 leading to a rise in the thermogenesis.223 Thus, Cit may act as a mediator 

of WAT mass reduction, WAT browning, and increased energy consumption by inducing 

UCP1.221 

Of note, some in vitro studies117,120,221 conducted on the effects of Cit on glucose metabolism in 

AT used high doses of Cit (2500 μM) that are ~50-250 folds higher than normal circulating Cit 

concentration (10-50 μM). All of these studies were conducted in the same laboratory, and the 

authors mentioned that a Cit concentration of 2500 μM mimics the plasma concentration of Cit 

after administration of Cit at a dose of 5 g/kg/day for 7 days in rats acording to a previous study.158  

 

6. Conclusions and perspectives   

Cit improves insulin sensitivity and has antihyperglycemic, antidyslipidemic, and antioxidant 

effects. The mechanisms underlying these effects include: (1) increased GSIS in pancreatic β-cells 

by activating VDCCs, stimulation of insulin gene promoter, and promotion of mitochondrial ATP 

production, (2) increased glucose uptake in the skeletal muscle by promoting the expression and 

translocation of the GLUT4 and increasing mitochondrial biogenesis, (3) increased lipolysis, β-

oxidation, and thermogenesis as well as decreased glyceroneogenesis in adipocytes. These effects 

are mainly NO-dependent and occur through the Cit-Arg cycle and NO production.  

Some points should be considered about the beneficial metabolic effects of Cit in T2D. First, a 

large body of evidence has been provided from in vitro or animal studies. Because Cit metabolism 

shows species differences, extrapolation of these findings to humans needs caution. Second, Cit 

metabolism is different between males and females; for example, the blood pressure-lowering 
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effects of Cit are more significant in women than men;92,93 these findings highlight the importance 

of considering sex differences on the impact of Cit when carbohydrate metabolism is evaluated. 

Third, most reported animal and human studies on the metabolic effects of Cit are from short-term 

studies, with concerns remaining about their long-term potential adverse effects.112 Finally, most 

of the beneficial metabolic effects of Cit are attributed to NO, and further studies are needed to 

explore the NO-independent metabolic effects of Cit. 

All in all, Cit administration can be considered a promising treatment for T2D, but it needs to be 

investigated in randomized clinical trials. 
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Table 1. Sex- and species-dependent metabolism of L-citrulline (Cit) 
Parameter Human Rodent 

Men Women Males Females 
Main site of endogenous synthesis Small intestine (60-90%)77 Small intestine (60-90%)83 

 
Main sources of endogenous synthesis (%) 

 

Glutamine 60-8079,100 60-80100 ~20103 NA 
Arginine 20-4079,100 20-40100 <1102,104 NA 
Proline ~379,100 ~3100 ~80102,104 NA 

Rate of endogenous production (μmol/kg/h) 6-1585 6-1585 95-15497,104 14197 
Plasma flux (µmol/kg/h) 5.5-10.685,100,105,106 5.5-8.985,106 81-9597,100 141±2897 
Plasma concentration (µM) 26-3788,89 22-3588,89 40±597 51±597 
Rate of Cit conversion to arginine (μmol/kg/h) 9-12105,106,108 11.9-12106,108 73±2397 120±2897 
Rate of arginine conversion to Cit (μmol/kg/h) 0.36-0.96105,106 0.36±0.1106 2.9±0.997 4.2±1.697 
Plasma flux (µmol/kg/h) 5.5-10.685,100,105,106 5.5-8.985,106 81-9597,100 141±2897 
Renal clearance (mL/min) 0.27±0.12107 NA 39.6±8.397 45.0±3.397 
Half-life (min) 40-7094 NA 180-24078 NA 
NA, Not available. 
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Table 2. Circulating concentrations of Cit (μM) in patients with type 2 diabetes 
Study n  Control Type 2 diabetes* Change 

µM %  
Tessari et al.145 18 31±6.4 53±8.4 +4 +11.4 
Froukje et al.146 70 26.0±1.4 35.0±2.1 +9 +25.7 
Zhou et al.147 226 35.7±7.9 49.8±8.7 +14.1 +28.3 
Saleem et al.148 60 43.0±1.3 61.2±5.7 +18.3 +29.9 
Lee et al.149 109 33.1±6.3 30.3±5.8 -2.8 -8.5 
Kövamees et al.150 25 30.3±7.4 22.7±7.3 -7.6 -25.1 
Tosur et al.151 12 27.8±1.7 17.8±1.2 -10 -35.9 
Hsu et al.152 12 27.2±1.3 21.6±2.2 -5.6 -20.6 
*All values are significantly different from controls.  
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Table 3. Animal and human studies related to the effects of L-citrulline (Cit) on type 2 diabetes (T2D) 
Study models  Animal/pati

ents 
Model of T2D Treatment Duration 

(days) 
 Outcomes  

Serum 
glucose 

Serum 
insulin 

Serum lipid 
profile 

others Ref. 

Animal 
studies 

Male rats 
(n=30) 

Zucker diabetic fatty 
(ZDF) 

63% 
watermelon 
juice 
(2014 mg/L 
Cit) in drinking 
water 

28 ↓ ↔ FFA Serum: ↑ Arg; ↑ 
Cit; ↓ L-ornithine 

156 

Male rats  
(n=10) 

HFD+Dex  
(1 mg/kg, 
intraperitoneal) 

Oral Cit,  
200, 400, 800 
mg/kg  

21 ↓ NR ↓ TC; ↓ TG; 
↓ LDL-C; 
↑HDL-C 

 
NR 

 
61 

Male rats 
(n=12) 

Zucker fatty diabetes 
mellitus (ZFDM) 

2.0% Cit in 
drinking water 

28 NR NR NR ↑ Plasma NOx; ↑ 
Cit; ↑ Arg 

 
157 

Human 
studies 

T2D (n=25) — 2000 mg/day 30 NR NR NR ↓Plasma arginase 
activity;  

↑ Plasma nitrites 

161 

T2D (n=45) — 3000 mg/day  60 ↓ ↔ ↓ TG 
↑HDL-C 

↓ HOMA-IR; ↑ 
HbA1c 

 
159 

T2D (n=45) — 3000 mg/day 60 NR NR NR Serum:  ↑NO 
metabolites; ↑ 
TAC; ↓ MDA 

65 

Arg, L-arginine; Dex, dexamethasone; FFA, free fatty acid; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein-cholesterol; HFD, 
high-fat diet; HOMA-IR, homeostasis model assessment of insulin resistance; LDL-C, low-density lipoprotein-cholesterol; MDA, 
malondialdehyde; NO, nitric oxide; TAC, total antioxidant capacity; TC, total cholesterol; TG, triglycerides; T2D, type 2 diabetes; ZFDM rats 
are derived from Zucker fatty rats and were generated by the repeated mating of male fatty (fa/fa) and female lean (fa/+) rats; NR, not reported. 
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Legend to Figures: 

Figure 1. L-citrulline (Cit) synthesis in small intestine enterocytes and the enzymatic 

machinery for the Cit–arginine (Arg) cycle in β-cells, skeletal muscle, and adipose tissue. 

AAT, amino acid transporter; ASL, argininosuccinate lyase; ASS, argininosuccinate 

synthetase; CAT, cationic amino acid transporter; cNOS, constitutive nitric oxide (NO) 

synthase; eNOS, endothelial NO synthase; GLN, glutaminase; nNOS, neuronal NO 

synthase; OAT, ornithine aminotransferase; OTC, ornithine transcarbamylase; P5C, 

pyrroline 5 carboxylate; P5CS, pyrroline 5 carboxylate synthase; POX, proline oxidase. 

Created with BioRender.com 

 Figure 2. Proposed mechanisms by which L-citrulline (Cit) stimulates glucose-stimulated 

insulin secretion in the pancreatic β-cells. These include (1) activation of voltage-

dependent Ca2+ channels (VDCCs) via (a) inhibition of adenosine triphosphate (ATP)‐

sensitive K+ channels (KATP channels) and (b) increase in intracellular cyclic guanosine 

monophosphate (cGMP); (2) stimulation of insulin gene promoter; (3) S-nitrosylation of 

glucokinase (GK); and (4) promotion of ATP production in the mitochondrion through the 

coupling of the Cit-Arg cycle to the Krebs cycle via the malate-aspartate shuttle. ADP, 

adenosine diphosphate; ASL, argininosuccinate lyase; ASS, argininosuccinate synthetase; 

cNOS, constitutive nitric oxide (NO) synthase; ER, endoplasmic reticulum; ETC, electron 

transport chain; GLUT2, glucose transporter type 2; G6P, glucose 6-phosphate; GTP, 

guanosine triphosphate; mCAT2A, mouse cationic amino acid transporter 2A; OAA, 

oxaloacetate; sGC, soluble guanylate cyclase; TCA cycle, tricarboxylic acid cycle. Created 

with BioRender.com 
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Figure 3. Possible nitric oxide (NO)-dependent mechanisms by which L-citrulline (Cit) 

stimulates glucose uptake in the skeletal muscle. (1) increasing glucose transporter type 4 

(GLUT4) gene expression by 5' adenosine monophosphate-activated protein kinase 

(AMPK) phosphorylation, (2) stimulating GLUT4 translocation from the cytosol to the cell 

membrane by (a) phosphorylation and (b) S-nitrosylation of GLUT4, and (3) increasing 

peroxisome proliferator-activated receptor γ (PPARγ) co-activator 1α (PGC-1α) and 

nuclear respiratory factor 1 (Nrf1) mRNA expression by phosphorylation of cyclic 

adenosine monophosphate (cAMP) response element-binding protein 1 (CREB1). ASL, 

argininosuccinate lyase; ASS, argininosuccinate synthetase; cGMP, cyclic guanosine 

monophosphate; IRS1, insulin receptor substrate-1; nNOS, neuronal NO synthase; PI3K, 

phosphoinositide 3-kinases; PKG, protein kinase G; sGC, soluble guanylate cyclase. 

Created with BioRender.com 

Figure 4. Possible mechanisms of L-citrulline (Cit) metabolic effects in adipose tissue: (1) 

stimulating lipolysis by increasing phosphorylation of hormone-sensitive lipase (HSL), (2) 

inducing β-oxidation by increasing expression of carnitine palmitoyl-transferase1 (CPT1), 

(3) reducing glyceroneogenesis by decreasing expression of cytosolic 

phosphoenolpyruvate (PEP), and carboxykinase (PEPCK), (4) inducing thermogenesis by 

increasing the uncoupling protein 1 (UCP1) expression. AC, acylcarnitine; ASL, 

argininosuccinate lyase; ASS, argininosuccinate synthetase; ATGL, adipose triglyce r ide 

lipase; ATP, adenosine triphosphate; Car, carnitine; CAT, carnitine-acylcarnit ine 

translocase; Cit-Arg cycle, citrulline-arginine cycle; CPT2, carnitine palmitoyl-

transferase2; DAG, diacylglycerol; DHAP, dihydroxyacetone phosphate; eNOS, 

endothelial nitric oxide (NO) synthase; FA-CoA, Fatty Acyl-CoA; GLUT4, glucose 
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transporter type 4; G3P, glycerol 3-phosphate; G6P, glycerol 6-phosphate; GyK, glycerol 

kinase; KB, ketone bodies; MAG, monoacylglycerol; MGL, monoglycerol lipase; NEFA, 

nonesterified fatty acid; OAA, oxaloacetate; PGC-1α, peroxisome proliferator-activated 

receptor γ (PPARγ) co-activator 1α; PPARα, peroxisome proliferator-activated receptor-

alpha; TAG, triacylglycerol; TCA cycle, tricarboxylic acid cycle. Created with 

BioRender.com 
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