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Abstract 

The sex steroid hormones (SSHs) play roles in regulation of various processes in the 

cardiovascular, immune, muscular and neural systems. SSHs affect prenatal and postnatal 

development of various brain structures, including regions associated with important 

physiological, behavioral, cognitive, and emotional functions. This action can be mediated by 

either intracellular or transmembrane receptors. While the classical mechanisms of SSHs action 

are relatively well examined, the physiological importance of non-classical mechanism of 

SSHs action through membrane-associated and transmembrane receptors in the brain remains 

unclear. The most recent summary describing the role of SSHs in different body systems is 

lacking. Therefore, the aim of this review is to discuss classical and non-classical signaling 

pathways of testosterone and estradiol action via their receptors at functional, cellular, tissue 

level and to describe the effects on various body systems and behavior. Particular emphasis 

will be on brain regions including the hippocampus, hypothalamus, frontal cortex and 

cerebellum.

Key words: sex steroids, gonadal hormones, brain structures, intracellular receptors, 

transmembrane receptors, classical/non-classical signaling
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1. Introduction

The sex steroid hormones (SSHs) are known not only as regulators of sexual differentiation, 

secondary sex characteristics, sexual behaviors, reproduction, but also affect various systems 

such as skeletal, immune, muscular, and cardiovascular. In addition, SSHs play a pivotal role 

in brain structure formation and cognitive function (Bhatia et al., 2014; Campbell & Jialal, 

2020; Carson & Manolagas, 2015; dos Santos et al., 2014; McEwen & Milner, 2017). 

Furthermore, SSHs exert pleiotropic effects in the central nervous system promoting 

neurogenesis and neuroprotection, as well as learning and memory (Diotel et al., 2018; Frick 

& Kim, 2018; Sun et al., 2019). These effects are mediated not only via intracellular or 

membrane-associated receptors (such as the androgen receptor (AR), estrogen receptor alpha 

(ERα), estrogen receptor beta (ERβ)) but also via transmembrane receptors (such as zinc 

transporter protein 9 (ZIP9), G protein-coupled estrogen receptor 1 (GPER1)). While the 

classical effects of SSHs via AR, ERα, ERβ are relatively well described, the physiological 

importance of rapid, non-classical actions of SSHs via membrane-associated (AR, ERα, ERβ) 

and transmembrane – GPCR steroid receptors (ZIP9, GPER1) is not well understood.

SSHs shape the brain during the critical prenatal and perinatal periods of development 

(organizational windows) when hormones interact with an immature neural substrate. In this 

period of life, exposure to SSHs can cause permanent sex differences in brain structures and 

their functions, which are responsible for the sexual differentiation of the brain and behavior 

(Cooke et al., 1998; Williams, 1986). Prenatal and perinatal effects of SSHs determine the 

brain’s response to steroids later in life. In addition, another “organizational window” during 

the postnatal period of life exists as well – puberty and adolescence (Schulz & Sisk, 2016a; 

Vigil et al., 2016). Besides the organizational effects, SSHs also have activational effects on 

mature brain structures. Activational effects are acute, reversible and evoke transient 
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behavioral or physiological responses throughout life (Cooke et al., 1998; Williams, 1986). In 

general, the activational effects of SSHs appear post puberty and act independently or in 

combination with organizational effects (Schulz & Sisk, 2016b). Therefore, both activational 

and organizational effects of SSHs on the brain could affect behavioral outcomes later in life. 

However, a current summary of results of experimental or clinical studies describing the role 

of testosterone (T) and estrogen (E, mostly estradiol (E2)) via classical and non-classical 

receptors and their role in different body systems is lacking. In this review, we aimed to sum 

up what is known and update the latest knowledge regarding the role of T and E2 in various 

tissues and body systems with specific focus on the brain via classical and non-classical 

signaling. First, we discuss the specific effects of T and E (E2) via different receptors (AR, 

ERα, ERβ, ZIP9, GPER1) on various body systems. Subsequently, we describe the role of T 

and E2 in hippocampus (HIP), hypothalamus (HYP), frontal cortex (FC), and cerebellum (CER) 

– selected brain regions associated with important physiological, behavioral, cognitive, and 

emotional functions.

2. Androgens and estrogens

There are three major classes of sex steroid hormones – androgens, estrogens and progestogens. 

Androgens are known as primary “male sex hormones” because of their masculinizing effects 

and Es, together with progestins, as primary “female sex hormones”. However, all of these 

hormones are synthesized in both females and males in different concentrations. Testosterone 

(T), the major androgen, is aromatized to estradiol by the enzyme aromatase and also reduced 

to the non-aromatizable androgen dihydrotestosterone (DHT) by 5-reductase (Celotti et al., 

1997). 
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As mentioned previously in the introduction, these hormones play a crucial role throughout the 

development and exert diverse physiological functions in the body (Bhatia et al., 2014; 

Campbell & Jialal, 2020; Carson & Manolagas, 2015; Diotel et al., 2018; dos Santos et al., 

2014; Frick & Kim, 2018; McEwen & Milner, 2017; Sun et al., 2019). Moreover, SSHs are 

also implicated in the development of the neurodevelopmental, neurodegenerative, and 

affective disorders (Crowley, 2017; McHenry et al., 2014; Morrell et al., 2005; Pinares-Garcia 

et al., 2018; Vadakkadath Meethal & Atwood, 2005). To exert these effects, SSHs must activate 

the signaling cascade via binding to appropriate receptors, either intracellular, membrane-

associated, or transmembrane.

2.1 Receptors for androgens and estrogens

The actions of androgens and estrogens were historically thought to be slow, nuclear processes 

mediated through hormone receptors located in the cytoplasm complexed to chaperons or in 

the nucleus, i.e. intracellular AR and ERs (Walters et al., 1981). These processes of intracellular 

hormone receptors usually result in transcription of specific genes (genomic actions) which 

may take several hours. For such gene transcriptional responses, the ligand-receptor complex 

must be localized in the nucleus (Métivier et al., 2003). Later, it has been discovered that 

ligand-intracellular receptor complexes might be associated with the plasma membrane and 

can stimulate fast, non-classical processes in the cytoplasm occurring within seconds or 

minutes (Morley et al., 1992). These actions include various extranuclear downstream cascades 

regulating different cellular responses, such as DNA synthesis, cell proliferation, migration or 

survival (Schwartz et al., 2016). Thus, the same intracellular receptor may be responsible for 

both genomic and rapid responses. The shape and conformational flexibility of the ligands and 

ligand-binding domains (LBD), e.g. the open/closed position of helix-12, determines whether 

the accommodated ligand will be agonist/antagonist of the genomic or rapid action (Norman 
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et al., 2001; Norman et al., 2004; Zinn & Schnell, 2018). According to the X-ray structure 

analysis, there are numerous different LBDs of nuclear steroid-hormone-receptors described in 

the Protein Data Bank (Bourguet et al., 2000). In several steroid receptors, the presence of a 

classical and a putative alternative binding site has been identified, mediating the genomic or 

rapid actions, respectively (Norman et al., 2004). It has been shown that some intermolecular 

interactions, such as interactions with a scaffold-proteins or membrane proteins in the caveolae 

(Fridolfsson et al., 2014), as well as the occupancy of the classical ligand pocket and the 

absence of the co-activator protein (Bálint et al., 2017) may facilitate conformational changes 

of the receptor favoring the accommodation of the ligand in the alternative binding site. 

Moreover, in the past couple of decades, rapid signaling through 7-transmembrane GPCR 

receptors, including the androgen receptor ZIP9 and GPER1 has been discovered (Berg et al., 

2014; Carmeci et al., 1997; Revankar et al., 2005; Thomas et al., 2014a). The roles of GPCR 

receptors are well described in the gonads of both males and females – apoptosis, 

spermatogenesis, signaling in Sertoli cells in case of ZIP9, and the proper function of Leydig 

cells in testes or uterine and reproduction in case of GPER1 (Berg et al., 2014; Kotula-Balak 

et al., 2018; Olde & Lee, 2009; Thomas et al., 2017a; Thomas et al., 2014a). 

There are numerous studies describing the molecular signaling pathways of these receptors and 

the effects of SSHs via these receptors on the brain, body and behavior (Table 1). The results 

of these studies have brought new insights into the neurobehavioral effects of SSHs. On the 

other hand, additional questions have arisen, such as the sex-, age- and tissue-specific role of 

rapid, non-classical mechanisms involving the GPCR ZIP9 and GPER1 receptors in the brain.
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2.1.1 Intracellular/membrane-associated AR 

The binding of T and DHT to nuclear AR was first described in 1968 (Bruchovsky & Wilson, 

1968a; Bruchovsky & Wilson, 1968b). The expression of AR was detected in various brain 

areas including HIP, HYP, FC, CER, amygdala and striatum (Mhaouty-Kodja, 2017; 

Tobiansky et al., 2018b), but also in pancreas (Díaz-Sánchez et al., 1995), prostate (Lee et al., 

1995), fibroblasts (Jacobson et al., 1995) or adipose tissue (Dieudonne et al., 1998). The 

expression of AR was also detected in presumptive pronephros and olfactory placodes of 

embryos, in pineal organ anlage and retina (3-5 days post-fertilization), and in several other 

regions of telencephalon, preoptic area and paraventricular nucleus of HYP in adult zebrafishes 

(Gorelick et al., 2008). The actions via AR signaling pathways are also involved in regulation 

of many processes in various body systems such as cardiovascular (Ikeda et al., 2005), immune 

(Gubbels Bupp & Jorgensen, 2018) and hemopoietic systems, glucose and fat metabolism (Lin 

et al., 2005), prostate epithelial homeostasis (Zhang et al., 2016), bone healing (Komrakova et 

al., 2020), muscle fast-twitch and hypertrophy (Davey et al., 2017; Morton et al., 2018), and 

brain masculinization (Sato et al., 2004). Signaling via AR is also involved in prostate cancer 

(Debes & Tindall, 2002), and breast cancer (Giovannelli et al., 2018), where it promotes the 

growth of the tissue. Regarding the memory, in intact male mice, the memory consolidation 

seemed to be protected via AR activation after infusion of aromatase inhibitor letrozole into 

dorsal HIP in object recognition and object placement tasks in comparison to gonadectomized 

male mice (Koss & Frick, 2019). The emotional memory, dependent largely on the HIP and 

amygdala, was tested in the orchiectomized adolescent male rats with or without T or DHT 

treatment by the inhibitory avoidance test. Orchiectomized rats spent significantly less time in 

the illuminated box after foot-shock training and had reduced AR-immunoreactivity in 

amygdala/hippocampal CA1 region in comparison to sham-operated males. The treatment of 
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these male rats with both T and DHT reverse these effects which suggest that androgens 

enhance inhibitory avoidance memory probably by binding to AR (Islam et al., 2021). 

The classical and non-classical signaling pathways via this receptor are activated through 

androgen hormone ligands, predominantly T and DHT (but also androstenedione, 

androstenediol, dehydroepiandrosterone) in the cytoplasm (Roy et al., 1999). In the classical 

signaling cascade, the ligand-receptor complex translocates into the nucleus, where the receptor 

dimerizes, binds to DNA as a transcription factor together with other proteins, and expresses 

target genes (Heemers & Tindall, 2007). 

Fast, non-classical actions mediated by AR associated with the membrane in a complex with 

caveolin 1 have been already discovered (Heinlein & Chang, 2002; Lu et al., 2001; Lutz et al., 

2003; Papakonstanti et al., 2003). These actions activate second messenger pathways including 

a) phosphatidylinositol 3 kinase (PI3K) leading to phosphorylation of AKT (known as protein 

kinase B) in the androgen-sensitive epithelial cells and osteoblasts (Baron et al., 2004; Kang et 

al., 2004) or activation of b) Src/Shc/ERK (proto-oncogene c-Src/Src homology 2 domain 

containing/Extracellular Signal-Regulated Kinase) in osteoblasts, osteocytes, embryonic 

fibroblasts and HeLa cells (Kousteni et al., 2001), and c) MAPK signaling cascade in androgen-

sensitive human prostate adenocarcinoma LNCaP cells (Heinlein & Chang, 2002). The non-

classical signaling pathway of AR could result in cell survival and cell proliferation through 

Src/p85/phosphoinositide 3-kinase further activating MAPK and AKT pathways. ERK is also 

able to phosphorylate the intracellular AR leading to activation of transcriptional coactivators 

and transcription itself in the nucleus (Liao et al., 2013). Both, the classical and non-classical 

signaling of AR are involved in the protective mechanisms in the brains of patients suffering 

from Alzheimer disease as reviewed in Pike et al. (2008) (Pike et al., 2008). That is, while 

activation of the classical pathway results in decreased -amyloid plaques, activation of non-
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classical signaling pathway leads to reduced apoptosis (Pike et al., 2008). The potential 

signaling mechanisms (intracellular and membrane-associated) via AR and their effects on 

various body systems are summarized in Figure 1. 
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2.1.2 Intracellular/membrane-associated ERs 

Intracellular ERs were first identified in 1958 (Jensen, 2012). Their expression was detected in 

various brain regions such as HIP, HYP, FC, CER, amygdala, olfactory bulb, cerebral cortex, 

basal forebrain, thalamus, pons Varolii, medulla oblongata, stria terminalis and periventricular 

preoptic nucleus (Almey et al., 2015; Foster, 2012; Pérez et al., 2003). Within HIP, the 

expression of ERs was reported in hippocampal pyramidal cells of Ammon’s horn and DG as 

soon as the 15th gestational week to adulthood. Furthermore, in adulthood, there is more ER 

than ER in HIP and cerebral cortex (González et al., 2007). In addition, both ERs are 

expressed in fetal neurons, but only ER is expressed in the Cajal-Retzius cells of marginal 

zones (layer I) in developing cerebral cortex and immature hippocampus, which suggest that 

each of the ERs may play a different role during prenatal development of HIP (González et al., 

2007). Regarding other body systems, the expression of ERs was detected in the 

gastrointestinal tract (Lange & Meyer, 2003), kidney medulla and cortex, liver (Mizutani et al., 

1994), lung, spleen, muscles, heart (Lange et al., 2001), mammary gland (Schams, 2003), 

ovary, uterus, testes, adrenal glands (Hutson et al., 2019) or adipose tissue (Mizutani et al., 

1994).

The concentrations of ERs are the highest during the critical or sensitive periods of life (mainly 

prenatal/neonatal period and puberty), which supports the important role of E in the 

organization of hippocampal structure during its development (O'Keefe & Handa, 1990). The 

cellular localization of ERs was detected not only in the neurons but also in glia of the HIP 

(Mitterling et al., 2010). On the ultrastructural level, 50% of ER was found in neuronal axons 

and axon terminals, 25% was detected in neuronal dendritic spines and remaining 25% was 

observed in astrocytes (Milner et al., 2001). ER immunoreactivity was reported in the 

perikarya and proximal dendrites of hippocampal pyramidal and granule cells, as well as in 
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non-principal cells of CA3 region of HIP. At the subcellular level, ER was affiliated with 

endomembranes, mitochondria and plasma membranes. Its immunoreactivity was also 

observed in both, dendritic shafts and spines, preterminal axons and axon terminals associated 

with synaptic vesicles (Milner et al., 2005). Similar to the AR, ERs are intracellular receptors 

influencing gene expression via hormone response elements occurring within hours or days 

(Bagamasbad & Denver, 2011). In addition, rapid, non-classical mechanism of E action 

dependent on membrane ERs has been previously described (Soltysik & Czekaj, 2013). It has 

been shown that binding of caveolin-1 is fundamental step of ER and ER joining of cell 

membrane and a so-called palmitoylation of the receptor is necessary for ERs localization to 

caveolaes (cell membrane invaginations) (Acconcia et al., 2005; Pedram et al., 2007; Schlegel 

et al., 1999). 

ERs can be localized at the plasma membranes in association with receptor tyrosine kinases 

(EGFR, IGF), G-proteins, striatin or Src tyrosine kinases (Levin, 2005; Xu et al., 2017). There 

are currently known two isoforms of intracellular ER receptors: ER and ER. Both act as 

homodimers (/, /), but can also create a heterodimer (/) (Li et al., 2004). Different 

combinations of these units can be activated by various ligands and, in turn, exert tissue-

specific actions mediated by binding to different transcriptional coactivators and corepressor 

proteins, leading to either agonist or antagonist action (selective ER modulators) (Kansra et al., 

2005). Various estrogens have different affinities to these ERs: 17-estradiol (E2) has equal 

affinity to both, whereas estrone preferentially binds to ER and estriol to ER (Zhu et al., 

2006). 

ER is crucial for the physiological development and functions of many organs and systems, 

such as reproductive, central nervous, cardiovascular and skeletal systems (Menazza et al., 

2017; Ruiz et al., 2020; Vidal et al., 1999). The stress response induced by corticosterone can 
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be modulated by the activation of ER in the brain, ovary and uterus (Niranjan & Srivastava, 

2019). ER signaling has a pivotal role in the regulation of metabolic processes as it enhances 

insulin resistance, energy metabolism and mitochondrial function in an ovariectomized mouse 

model of metabolic syndrome (Hamilton et al., 2016). Obesity, specifically fat accumulation, 

can be prevented through the activation of ER, which leads to enhancement of the energy 

expenditure (Arao et al., 2018). Moreover, the importance of ER in regulation of obesity has 

been shown in female ER knockout mice displaying worsened insulin resistance and higher 

adiposity, and in turn, enlarged size of early atherosclerotic lesions. Thus, ER signaling could 

serve as a control point of atherosclerosis in females, because it can promote HDL function, 

liver cholesterol uptake and whole-body cholesterol removal. Moreover, the signaling cascade 

of ER can protect females against the development of atherosclerosis (Zhu et al., 2018). In a 

mouse model of obesity, the features of metabolic syndrome, such as adiposity, plasma 

triglycerides, and oxidative stress, were reduced following administration of the grape seed 

extract enriched in the flavan-3-ols procyanidin dimers (the most effective red wine polyphenol 

on the endothelium) partially via ER (Leonetti et al., 2018). Regarding the learning and 

memory, administration of the ERα selective agonist PPT (propyl pyrazole triol) to 

ovariectomized mice result in failure to learn the socially acquired preference of food. This 

outcome suggests, that ER signaling could be impairing the memory for the socially acquired 

food preference (Clipperton et al., 2008).

As well as AR, ER can activate the non-classical, rapid signaling cascade through its 

association with the cell plasma membrane. This signaling, together with the caveolin-binding 

protein striatin, activates MAPK, phosphatidylinositol 3-kinase and Akt kinase in the vascular 

endothelial cells leading to higher activity of endothelial NO synthase (Lu et al., 2004). These 

rapid actions can also increase glycerol release, lipolysis and induce beiging of adipocytes 
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(Santos et al., 2018). In addition, reduction of cardiac ischemia reperfusion injury in endothelial 

cells of ovariectomized mice was observed following an estrogen-dendrimer conjugate 

treatment, which selectively activates non-classical ER, in comparison to control mice 

(Menazza et al., 2017). Moreover, membrane-associated ER signaling has an important role 

in bone growth (Iravani et al., 2017) and in vibration-induced effects of bone fracture healing 

(Santos et al., 2018). ERs rapidly affect neural plasticity (within 1 h), in a rapid learning 

experiment, the ovariectomized mice were tested within 40 min after ER agonist PPT or ERβ 

agonist DPN (diarylpropionitrile) administration for social recognition, object recognition, or 

object placement learning. Results from this experiment showed that PPT administration 

improved social recognition, promoted object recognition and placement, and increased 

dendritic spine density in the stratum radiatum and lacunosum- molecular, which suggest that 

rapid E mediated learning enhancements may predominantly be mediated via ER (Phan et al., 

2011).

ER is important for migration of neurons and glial cells, or neural differentiation of embryonic 

stem cells, especially for differentiation of midbrain neurons (Varshney et al., 2017). 

Furthermore, dysregulation of ER signaling could have a negative effect on development of 

neurological disorders, such as dyslexia, through DNA de-methylation actions (Varshney & 

Nalvarte, 2017). ER also mediates calcium-induced mitochondrial permeability transition 

pore caused by ischemic brain injury through cyclophilin D and ATPase interaction (Burstein 

et al., 2018). In cancer research, ER seems to be a potential therapeutic target for colorectal 

or breast cancer, because its activation represses oncogenesis and metastasis (Austin et al., 

2018; Williams et al., 2016). ER increases protein p53 signaling, leading to DNA repair 

(Weige et al., 2012), apoptosis and reduced proliferation (Hsu et al., 2006). In addition, the 

activation of ER signaling supports innate immunity resulting in the suppression of the cancer 
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metastasis in lungs (Zhao et al., 2018). Concerning the other roles of this receptor, ER is 

involved in fat metabolism, where its activation induces fat mass redistribution and regulates 

hepatic triglyceride composition, which leads to tissue-specific and sex-dependent response to 

metabolic adaptation to overfeeding (González-Granillo et al., 2020). With reference to social 

learning, the ovariectomized mice treated with the ERβ selective agonist WAY-200070 

(benzoxazole) showed a 2-fold prolonged preference for food eaten by their demonstrator. The 

results after the ERβ selective agonist treatment suggest that the enhancing effects on social 

learning may be due to the action of ERβ on submissive behavior (Clipperton et al., 2008). 

Another selective ERβ agonist - ISP358-2 (A-C estrogen), seems to be a potent candidate for 

enhancing memory consolidation in postmenopausal women (Hanson et al., 2018).

Concerning the non-classical effects of ER, in cardiovascular system, especially in 

cardiomyocytes, ER activation stimulates PI3 kinase which increase the modulatory 

calcineurin-interacting protein 1 gene and protein expression, which subsequently inhibits 

calcineurin activity increased by angiotensin II and prevent the hypertrophy (Pedram et al., 

2008). The classical effects of ER are also involved, where the transcription of the natriuretic 

peptide genes (ANP, BNP) are stimulated, whose as a proteins inhibit hypertrophy (activated 

by angiotensin II) via ERK signaling (Pedram et al., 2008). ER signaling also reverts pre-

existing severe heart failure by stimulation of cardiac angiogenesis, suppression of fibrosis, 

and restoration of hemodynamic parameters. It has also been reported that ER membrane-

associated receptors can mediate the reward circuitry in the brain and affect motivated behavior 

in females (Iorga et al., 2018). In older women, the period of the menopause is known not only 

for decline in cognitive function and impaired memory, but also for so called “hot flashes” that 

can be modified through ER activation. Administration of the selective agonist of ER - 

EGX358, reduced the senktide‐mediated increase in tail skin temperature and enhanced 
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memory in the object recognition and object placement tasks in ovariectomized mice. Thus, 

this ER agonist seems to be a promising in research of drugs for reducing menopause‐related 

hot flashes or memory dysfunction(Fleischer et al., 2020). The possible signaling pathways of 

intracellular and membrane-associated ERs are summarized in Figure 2. Besides intracellular 

or membrane associated receptors, E2 as well as T, binds to GPCR receptors. 

2.1.3 GPCR receptors for androgens and estrogens

The discovery of SSHs actions through GPCR transmembrane receptors is relatively new. A 

transmembrane AR called AR2 was discovered in the brain and gonads in 1999 (Sperry & 

Thomas, 1999). In 2014, was AR2 identified in Atlantic croaker ovaries as Zinc transporter 

protein 9/Zrt- and Irt-like protein 9 (ZIP9) 7-transmembrane G-protein coupled receptor (Berg 

et al., 2014; Thomas et al., 2014a). G-protein coupled estrogen receptor (GPER1) was 

discovered in 1997 in ER-positive breast carcinoma cell lines and was initially called G protein-

coupled receptor 30 (Carmeci et al., 1997). In 2005, it was established that this 7-

transmembrane G-protein coupled receptor has a high affinity for E2 (Revankar et al., 2005), 

and thus, it was renamed GPER1.

2.1.3.1 ZIP9

ZIP9, also known as zinc transporter protein, is a part of the 14-member ZIP family 

and is located in plasma and mitochondrial membrane, nucleus and endoplasmic reticulum 

(Thomas et al., 2014b). ZIP proteins belong to the solute carrier family that manage membrane 

transport of zinc and regulates its cytoplasm concentration. Part of the zinc transporters regulate 

the efflux of zinc out of the cell and into vesicles (solute carrier 30) and other zinc transporters 

control the influx of zinc from outside the cell and from vesicles (solute carrier 39A or ZIP 1-

14) (Berg et al., 2014; Thomas et al., 2014a). The ZIP9 gene is mostly expressed in gonadal 
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tissue and the brain (Berg et al., 2014). ZIP9 transmembrane receptor contains a ligand-binding 

groove for T which binds with high affinity to this receptor. Interestingly, there is a suggestion 

that monomeric ZIP9 might not represent the physiological state of its action in cells and that 

receptor needs to dimerize for T agonistic action (Kalyvianaki et al., 2019).

Regarding the signaling pathways, ZIP9 induces the phosphorylation of AKT and ERK through 

inhibition of protein tyrosine phosphatase, which leads to activation of B-cell receptor signaling 

in DT-40 cells (Taniguchi et al., 2013). ZIP9 can also induce the phosphorylation of ERK 1/2 

and transcription factors – cAMP response element-binding protein (CREB) and activating 

transcription factor 1 (ATF1) – in Sertoli cells leading to claudin expression and tight junction 

formation. This ZIP9 cascade may be crucial for male fertility (Bulldan et al., 2016a) because 

the Sertoli cells have a central role in spermatogenesis (Griswold, 1998). Upstream regulation 

of ZIP9 is controlled by inhibition of Notch signaling, which increases the expression of 

membrane ZIP9 and intracellular AR receptors as well as androgen-regulated claudin-5, 

claudin-11 and cAMP in mouse Sertoli cells (Kaminska et al., 2020). Epigenetics also plays a 

role in the regulatory effects of ZIP9, e.g. in skin, radiation-induced DNA-methylation leads to 

skin fibrosis via the ZIP9 and TGF signaling pathway (Qiu et al., 2020). Interestingly, before 

ZIP9 identification, it was shown that androgens can modulate zinc homeostasis in the mouse 

brain. Although the temporal and spatial zinc homeostasis in the brain is modulated by SSHs, 

the mechanisms and potential involvement of ZIP9 are still unknown (Beltramini et al., 2004).

2.1.3.2 GPER1

GPER1 is mainly localized in the endoplasmic reticulum (Revankar et al., 2005), but is also 

located in the plasma membrane (Filardo et al., 2007). In brain, expression of GPER1 was 

detected in the cortex, HYP (paraventricular and supraoptic nuclei), HIP, specific nuclei of 

midbrain (the pontine nuclei, locus coeruleus), trigeminal nuclei, CER (Purkinje layer) and 
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pituitary gland (anterior, intermediate, and neural lobes). The expression was detected also in 

other body systems such as cardiovascular (Almey et al., 2015; Hazell et al., 2009; Meyer et 

al., 2012), both female and male reproductive systems (Plante et al., 2012; Sandner et al., 2014), 

excretory system (Hazell et al., 2009) and gastrointestinal tract (Liu et al., 2019b).

The impact of GPER1 signaling on the brain development and functions is not clear, 

but GPER1 is highly expressed in the nervous system, and its activation shows beneficial, cell 

specific effects in various brain disorders (Alzheimer’s, Parkinson’s disease) (Roque et al., 

2019; Sheppard et al., 2018). It has been found that GnRH secretion in the HPG axis is 

modulated by GPER1 (Chimento et al., 2014). The signaling cascade through activation of 

GPER1 includes various non-classical actions that seem to be tissue specific. The stimulation 

of GPER1 activates Ca2+ release, ERK1/2, PI3K action and stimulation of epidermal growth 

factor receptor (EGFR) transcription in breast cancer cell lines (Filardo et al., 2000a). In the 

dorsal HIP of female mice, GPER1 does not activate ERK1/2, but rather signals through c-Jun 

N-terminal kinase (JNK) phosphorylation instead (Filardo et al., 2000b). GPER1 stimulation 

in the hippocampus can lead to better performance in spatial working memory tasks in 

ovariectomized rats (Hammond et al., 2009) and can improve object and spatial memory 

consolidation in ovariectomized mice (Kim et al., 2016c). However, unlike ER and ER, 

GPER does not activate ERK in the dorsal HIP nor is dorsal HIP ERK activation necessary for 

GPER to influence object recognition and spatial memory consolidation in ovariectomized 

mice (Kim et al., 2016a). Regarding the epilepsy and HIP, the reduction of seizures’ severity 

has been observed after GPER1 activation (Zuo et al., 2020). Moreover, higher concentrations 

of GPER1 in the dorsal prefrontal cortex of monkeys was associated with greater dendritic 

spine synapse density in this area, suggesting an important role for GPER1 in synaptic plasticity 

(Crimins et al., 2016). 
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E2 binds GPER1 with high affinity and this activation leads to ERK phosphorylation, PI3K 

stimulation, intracellular Ca2+ increase, and cAMP production in the MCF-7 breast cancer cell 

line, which occurs via trans-activation of the epidermal growth factor receptor and results in 

proliferation (Filardo et al., 2000b). Although, GPER1 mediates proliferation in the human 

breast epithelial cells in normal and malignant breasts, GPER1 knockout mice do not show any 

overt mammary phenotype similar to ER knockout mice. It means that both GPER1 and ER 

operate breast tissue proliferation but only ER signaling is crucial for breast development 

(Scaling et al., 2014). In males, GPER1 has a critical role in spermatogenesis, where it controls 

proliferation and apoptosis (Chimento et al., 2014). 

GPER1 signaling seems to have plenty of more functions in different body systems. For 

example, it preserved degeneration of retinal ganglion cells and acute ocular hypertension 

through the PI3K/AKT pathway (Jiang et al., 2019). Through the AKT/mTOR/GLUT pathway, 

GPER1 manages glucose metabolism and insulin secretion in -cells of rats (Bian et al., 

2019b). In myenteric neurons of the gastrointestinal tract the GPER1, as well as ERs, plays a 

role in motility (Liu et al., 2019a). In the endothelium of blood vessels, GPER1 activation leads 

to vasodilatation (Meyer et al., 2012). Furthermore, GPER1 seems to be a potential therapeutic 

target for females after menopause suffering from salt-sensitive hypertension (Gohar et al., 

2020). In cardiac cells (cardiomyocytes, cardiac fibroblasts, mast cells), GPER1 signaling 

inhibits the gene expression of components (cyclin B1, CDK1) involved in proliferation of 

cardiac fibroblasts and mast cells, and prevents hypertrophic remodeling (Deschamps & 

Murphy, 2009; Ogola et al., 2019; Wang et al., 2012). Cardiovascular and kidney protection 

via GPER1 has been studied by the examination of angiotensin II-induced hypertension and 

oxidative stress in GPER1 knockout mice. Estrogen signaling through GPER1 suppresses the 

transcription of NADPH oxidase 4 by increasing cAMP, thereby limiting the production of 

reactive oxygen species which avoids stiffening of the arteries (Ogola et al., 2019). 
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Effects of GPER1 signaling in the brain and other organs are summarized in Table 1. In the 

next part of the review, the effects of T and E2 signaling in selected brain regions (HIP, HYP, 

FC, and CER) will be discussed. 



Table 1. The classical and non-classical actions of SSHs through their receptors in the cytoplasm, those 

attached to membrane (AR, ERs) and through transmembrane GPCR receptors (ZIP9, GPER1).

H. R. Type Signaling pathway Effect on the brain Effect on the other body systems or on the behavior

In
tr

ac
el

lu
la

r

Regulation of gene 
transcription in the 
nucleus (more than 
3000 genes (Jin et al., 
2013)): 
IGF receptor (Pandini 
et al., 2005), KLK3 
(PSA), KLK2, and 
NKX3-1 (Prescott et 
al., 1998)
DNA binding motif: 
AGAACA (Ikeda et 
al., 2015)

 regulation of hemopoietic 
system, glucose and fat 
metabolism (Lin et al., 2005)

 prostate epithelial homeostasis 
(Zhang et al., 2016)

 bone healing (Komrakova et al., 
2020)

 muscle fast-twitch, hypertrophy 
(Davey et al., 2017; Morton et 
al., 2018)

 role in prostate and breast cancer 
(Debes & Tindall, 2002; 
Giovannelli et al., 2018) 

A
R

M
em

br
an

e-
as

so
ci

at
ed

PI3K/AKT; PKA, 
PKC; Src/p85/PI3K; 
Src/Shc/ERK; 
Src/p85/p110/AKT/F
OXO, Bad; 
ERK/MAPK; 
Src/p85/MAPK/Elk1/
CREB (Baron et al., 
2004; Duarte et al., 
2016; Kang et al., 
2004; Kousteni et al., 
2001; Lucas-Herald et 
al., 2017; Sukocheva et 
al., 2015)

 organizational and 
activational effect

 brain 
masculinization 
(Sato et al., 2004)

 GnRH expression 
regulation in HYP 
(Belsham et al., 
1998; Belsham & 
Lovejoy, 2005)

 neurogenesis 
regulation, activation 
of growth factors, 
myogenesis 
(McCulloch et al., 
2000)

  pyramidal neurons 
plasticity in HIP 
(Islam et al., 2020)

 protection against 
oxidative stress in 
CER (Ahlbom et al., 
2001)

 decreased -amyloid 
plaques, decreased 
neuronal apoptosis 
(Pike et al., 2008)

 protect memory 
consolidation 
(Koss & Frick, 
2019)

 enhance 
inhibitory 
avoidance 
memory (Islam 
et al., 2021)

 anxiolytic and 
antidepressant 
effects in males 
(Chen et al., 
2014)

  cell survival and 
proliferation (Liao et al., 
2013)

T
es

to
st

er
on

e,
 D

ih
yd

ro
te

st
os

te
ro

ne

Z
IP

9

G
PC

R

AKT, ERK1/2; Bax, 
p53, JNK, caspase-3, 
cytochrome c; CREB, 
ATF1 cells (Bulldan et 
al., 2018; Bulldan et 
al., 2016b; Taniguchi 
et al., 2013; Thomas et 
al., 2014a)

 potential 
organizational and 
activational effect

 activation of the B-cell receptor signaling in DT-40 
cells (Taniguchi et al., 2013)

 male fertility (Bulldan et al., 2016a)
 spermatogenesis (Griswold, 1998)
  skin fibrosis (Qiu et al., 2020)
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In
tr

ac
el

lu
la

r

Regulation of gene 
transcription in the 
nucleus (more than 
3000 genes (Welboren 
et al., 2007)): 
COX7RP , EBAG9
(Watanabe et al., 
1998), Efp (Ikeda & 
Inoue, 2004), NRIP, 
Forkhead, AP‐1, Oct 
and C/EBP motifs 
(Welboren et al., 2007)
DNA binding motif : 
AGGTCA (Ikeda et al., 
2015)

 modulation of stress response 
(Niranjan & Srivastava, 2019)

 energy metabolism, 
mitochondrial function, insulin 
resistance (Hamilton et al., 2016)

 prevention of fat accumulation 
(Arao et al., 2018)

 atherosclerosis prevention – 
promote HDL function, liver 
cholesterol uptake, and whole-
body cholesterol removal (Zhu et 
al., 2018)

 breast cancer development 
(Brisken & O'Malley, 2010)

E
R



M
em

br
an

e-
as

so
ci

at
ed

MAPK, AKT (171); 
PI3K, PKC, Ca2+ 
influx, ERK; 
MDM2/P53/Bcl2/Bax; 
P21/P27; GSK-
3/CyclinD1; 
Bad/Caspase9; NF-KB 
(Barone et al., 2010; 
Xu et al., 2017), 

  endothelial NO synthase 
activity (Lu et al., 2004)

  glycerol release, lipolysis, 
induce beiging of adipocytes 
(Santos et al., 2018)

 cardiac reperfusion injury in 
endothelial cells (Menazza et al., 
2017)

 bone growth, fracture healing 
(Iravani et al., 2017; Santos et 
al., 2018)

In
tr

ac
el

lu
la

r

Regulation of gene 
transcription in the 
nucleus (more than 
3000 genes (Welboren 
et al., 2007)): 
COX7RP , EBAG9
(Watanabe et al., 
1998), Efp (Ikeda & 
Inoue, 2004), NRIP, 
Forkhead, AP‐1, Oct 
and C/EBP motifs 
(Welboren et al., 2007)
DNA binding motif: 
AGGTCA (Ikeda et al., 
2015)

  ANP, BNP, inhibit 
hypertrophy of cardiomyocytes 
(Pedram et al., 2008)

 affect the development of 
neurodevelopmental disorders 
via DNA-demethylation 
(Varshney & Nalvarte, 2017)

 stimulation of p53, oncogenesis 
and metastasis suppression 
(Austin et al., 2018; Williams et 
al., 2016)

 support innate immunity (Zhao et 
al., 2018)

 fat mass redistribution, regulate 
hepatic triglyceride composition 
(Gonzalez-Granillo et al., 2020)

E
st

ro
ge

ns

E
R



M
em

br
an

e-
as

so
ci

at
ed

BDNF/TrkB (465); 
PI3K, PKC, Ca2+ 
influx, ERK; 
MDM2/P53/Bcl2/Bax; 
P21/P27; GSK-
3/CyclinD1; 
Bad/Casp9; NF-kB 
(Xu et al., 2017)

 organizational and 
activational effect

 glutaminergic 
synapse formation 
(Jelks et al., 2007)

 memory formation, 
 synapse plasticity, 
spine density, 
neurogenesis, 
(Baumler et al., 
2019; Dominguez et 
al., 2018; Duarte-
Guterman et al., 
2015; Frick, 2015; 
Frick et al., 2015; 
Galea et al., 2018; 
Gibbs & Gabor, 
2003; Kim et al., 
2019b; Koss et al., 
2018a; Sun et al., 
2019)

  HIP-dependent 
memory 
consolidation (Kim 
et al., 2016b; Koss et 
al., 2018b; Krentzel 
et al., 2019)

 affect spatial 
memory, memory 
consolidation and 
cognitive functions 
(Duarte-Guterman et 
al., 2015; Frick, 
2015; Frick et al., 
2015; Galea et al., 
2018; Koss et al., 
2018a; Koss et al., 
2018b)

 masculinization 
 of HIP cholinergic 

system (Mitsushima 
et al., 2009a; 
Mitsushima et al., 
2009b)

 social recognition 
regulation (Pierman 
et al., 2008)

 brain protection: 
antioxidant defense 
and attenuation of 
apoptotic pathway 
(Baez-Jurado et al., 
2019)

 neural differentiation 
93

 enhance 
learning via 
ER (Phan et 
al., 2011)

 could impair 
the memory for 
socially 
acquired food 
preference via 
ER 
(Clipperton et 
al., 2008)

 anxiolytic and 
antidepressant 
effects 
(Chhibber et 
al., 2017; Xu et 
al., 2016)

 control of 
aggressive 
behavior in 
female 
(Hashikawa et 
al., 2017)

 mediate the 
reward circuitry 
– affect 
motivated 
behavior in 
females via 
ER (Tonn 
Eisinger et al., 
2018)

 enhance effect 
on social 
learning via 
ER 
(Clipperton et 
al., 2008)

 enhance 
memory 
consolidation 
via ER 
(Hanson et al., 
2018)

 modulatory calcineurin-
interactin protein 1, which 
inhibit calcineurin activity 
and hypertrophy of 
cardiomyocytes (Pedram et 
al., 2008)

 reverts pre-existing heart 
failure:  angiogenesis, 
fibrosis, hemodynamic 
parameters restoration (Iorga 
et al., 2018)
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G
PE

R
1

G
PC

R

Ca2+, cAMP, ERK1/2, 
PI3K; PI3K/AKT; 
AKT/mTOR/GLUT;
(Bian et al., 2019a; 
Filardo et al., 2000a)
JNK, cofilin (Kim et 
al., 2019a)

 potential 
organizational and 
activational effect

 spatio-temporal 
signalization in HIP 
(Evans, 2019)

 synaptic plasticity 
regulation and  
spine density 
(Crimins et al., 
2016)

  epileptic seizures 
severity (Zuo et al., 
2020)

 neuroprotective 
effects in various 
brain disorders 
(Roque et al., 2019)

 blood brain barrier 
protection (Maggioli 
et al., 2016)

  synaptic spine 
density (Frick, 2015; 
Kim et al., 2019b; 
Koss et al., 2018a; 
Koss et al., 2018b)

 modulation of GnRH 
secretion in HPG 
axis (Chimento et 
al., 2014)

 anxiogenic and depressant effects in both males and 
females (Fındıklı et al., 2016; Kastenberger & 
Schwarzer, 2014; Krȩżel et al., 2001)

 EGFR transcription, cell proliferation (Filardo et al., 
2000b)

 improve the object and spatial memory consolidation 
and working memory (Hammond et al., 2009; Kim et 
al., 2016c)

 preserved degeneration of retinal ganglion cells and 
acute ocular hypertension (Jiang et al., 2019)

 manages glucose metabolism and insulin secretion in 
-cells (Bian et al., 2019b)

   gut motility and contraction (Liu et al., 2019a)
 vasodilatation (Meyer et al., 2012)
 prevent hypertrophic remodeling (Deschamps & 

Murphy, 2009; Ogola et al., 2019; Wang et al., 2012)
  reactive oxygen species, arteries stiffening 

prevention (Ogola et al., 2019)
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Figure 1. Intracellular, membrane-associated and transmembrane GPCR receptors of androgens. A – Androgen, AR – 

Androgen Receptor, mAR – membrane-associated Androgen Receptor, ZIP9 – Zinc transporter protein 9, Zrt- and Irt-like 

protein 9, c-Src – protooncogene tyrosine-protein kinase Src, MAPK – Mitogen-Activated Protein Kinase, ELK-1 – 

transcription activator, CREB – cAMP Response Element-Binding protein, AKT – protein kinase B, RAS – small GTPases, 

RAF-1 – proto-oncogene, serine/threonine kinase, FOXO – Forkhead transcription factors of the O class, BAD – Bcl2 

Associated Agonist Of Cell Death, PI3K – PhospoInositide 3-Kinase, PLC – PhosphoLipase C, Bax – Bcl2 Associated X, 

JNK – c-Jun N-terminal kinases, ATF – Activating Transcription Factors, ERK – Extracellular signal-Regulated Kinases, TF 

– Transcription Factor, Zn2+ – Zinc (adapted from (Carrier et al., 2015; Leung & Sadar, 2017; Thomas et al., 2017b) and 

created with BioRender.com).

https://en.wikipedia.org/wiki/Activating_transcription_factor
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Figure 2. Intracellular, membrane-associated and transmembrane GPCR receptors of estrogens. E2 – Estradiol, ER – 

Estrogen Receptor Alpha, ER– Estrogen Receptor Beta, mER – membrane-associated Estrogen Receptor, GPER1 – G-

Protein Coupled Estrogen Receptor 1, mGLUR – metabotropic Glutamate Receptor, NMDA – N-Methyl-D-Aspartate 

receptor, RTK – Receptor Tyrosine Kinase, ERE – Estrogen Responsive Element, c-Src – protooncogene tyrosine-protein 

kinase Src, MEK – Mitogen-activated protein kinase kinase, AKT – protein kinase B, RAS – small GTPases, RAF-1 – proto-

oncogene, serine/threonine kinase, CREB – cAMP Response Element-Binding protein, PI3K – PhospoInositide 3-Kinase, 

BDNF – Brain-Derivated Neurotrophic Factor, HAT – Histon AcetylTansferase, Ac – Acetyl group, mTOR – mammalian 

Target of Rapamycin, cAMP – cyclic Adenosine MonoPhosphate, PKA – Protein Kinase A, JNK – c-Jun N-terminal Kinases, 

ATF – Activating Transcription Factors, ERK – Extracellular signal-Regulated Kinases, TF – Transcription Factor, Ca2+ – 

Calcium (Adapted from (Carrier et al., 2015; Frick, 2015; Kim et al., 2019a; Pedram et al., 2008; Tu & Jufri, 2013) and created 

with BioRender.com).

https://en.wikipedia.org/wiki/Activating_transcription_factor
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3. The effect of T and E2 on brain structures 

During fetal development, the brain is already being influenced by sex hormones (T, E, 

Progesterone) and neurons throughout the entire nervous system already have receptors for these 

sex hormones (Karaismailoğlu & Erdem, 2013; Miranda & Sousa, 2018; Swaab & Garcia-

Falgueras, 2009). Prenatal and early postnatal SSHs exposure organizes the brain in a male-

typical or female-typical pattern. These sex-typical differences in brain structures are partially 

results of the organizational effects of SSHs that can have long-term influence on dendritic 

spine remodeling, myelination, neuronal pruning, apoptosis, and/or epigenetic changes later in 

adulthood. SSHs have also activational effects on afore mentioned changes in the brain 

(dendritic spine remodeling, myelination, etc.) later in life and those are dependent on hormone 

concentration in adulthood. The behavioral outcomes, such as copulation, spatial abilities or 

memory, are the consequences of both organizational and activational effects of SSHs (Vigil 

et al., 2016). The other important factors that regulate the sex-specific action of T and E2 are 

the enzymes converting T to E2 (aromatase) or DHT (5-reductase). The dissimilarities in 

concentrations of androgens, estrogens, aromatase, and 5-reductase, as well as in expression 

of SSH receptors (AR, ERs, ZIP9, GPER1) in specific areas of the brain contribute to 

behavioral heterogeneity between males and females (Colciago et al., 2005; Roselli et al., 

1985). The role of androgens and estrogens in selected brain regions related to behavior, 

including the HIP, HYP, FC, and CER, are summarized 

in Table 2. 

3.1 T and E2 in hippocampus

Androgens influence the structural development of the HIP by increasing and maintaining 

spine synaptic density in both males and females (Leranth et al., 2004; Leranth et al., 2003; 

MacLusky et al., 2006). In male and female rats, testosterone proprionate rescues 
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gonadectomy-induced reductions in CA1 spine synaptic density in a manner that partially 

depends on afferent subcortical input from fimbria-fornix, however, some of the effects are 

still present after fimbria-fornix transection (Kovacs et al., 2003). Moreover, T, as well as E2, 

increases cell density by stimulating neuronal cell proliferation in the HIP (Smeeth et al., 2020). 

As well as in early development and in puberty, neurogenesis provoked by T (or DHT) can 

occur during adulthood in both sexes (Okamoto et al., 2012; Spritzer & Roy, 2020). However, 

there are sex differences in early development of the HIP, where cell proliferation during the 

first postnatal week is approximately 2-times higher in male compared to female rodents 

(Bowers et al., 2010). Moreover, neonatal male rats have a significantly higher number of cells 

in the HIP than female rats (Zhang et al., 2008). T can also increase synaptic density in the 

dentate gyrus and promote neurogenesis in HIP of male, but not female, mice (Fattoretti et al., 

2019).

In males, synaptic plasticity in CA1 pyramidal neurons is affected by androgens through AR 

(Islam et al., 2020). Furthermore, the activation of AR-dependent signaling in the dentate gyrus 

increases survival of adult-born neurons in male rats (Hamson et al., 2013). In another 

experiment, the replacement of T in gonadectomized male rats alleviated impaired memory 

caused by a reduction of AR-immunoreactive neurons in the male HIP (Moghadami et al., 

2016). In hippocampal primary neuron cultures, T treatment rapidly increased spine density 

through non-classical cascades such as increased expression of phosphorylated ERK1/2 and 

CREB, but not the p38 and JNK (Guo et al., 2020). In addition, T-stimulated synaptic plasticity 

in the HIP could be mediated through brain-derived neurotrophic factor (BDNF) (Atwi et al., 

2014). Concerning clinical studies, in middle-aged males with higher cortisol concentrations, 

plasma T concentrations were positively associated with hippocampal volume and memory 

performance (episodic memory), suggesting that T also exerts neuroprotective effects in men 
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(Panizzon et al., 2018). Based on these studies, T seems to be important for many hippocampal 

functions and deserves attention as a regulator of synaptic plasticity and memory.

Regarding the actions of E2 in the HIP, dorsal hippocampal administration of E2 rapidly 

enhances object recognition and spatial memory consolidation through many mechanisms, 

including increased acetylation of histone 3 at several Bdnf promoters and lower expression of 

histone deacetylase proteins (Fortress et al., 2014; Tuscher et al., 2018). The activation of 

GPER1 by direct infusion of GPER1 agonist G1 into the dorsal HIP facilitates object 

recognition memory and hippocampal-dependent spatial memory in ovariectomized female 

mice via phosphorylation of JNK, which leads to cofilin-mediated actin polymerization and 

spinogenesis (Kim et al., 2019a; Kim et al., 2016a). The important role of ER during the early 

developmental period, as in development of reproductive tissue, but also a non-reproductive 

role in developing brain, has been emphasized (Bondesson et al., 2015). The hippocampal ER 

signaling activation stimulates glutamatergic synapse formation during development (Jelks et 

al., 2007). Additionally, the expression of ER (Solum & Handa, 2001) and the colocalization 

of ER and BDNF in pyramidal cells of CA3 and CA1 subregions of HIP occurs. This 

interaction between ER and BDNF could modify the physiology of HIP during development 

(Solum & Handa, 2002). Concerning ER-mediated gene transcription in the nucleus, ERβ 

seems to be a negative regulator of this action (Bean et al., 2014). On the other hand, studies 

of long-term treatment with an ERβ agonist (diarylpropionitrile) have shown that ERβ 

signaling contributes to regulation of neurogenesis, neuromodulation and neuroprotection in 

the hippocampal formation of ovariectomized middle-aged rats (Sárvári et al., 2016). 

3.2 T and E2 in hypothalamus 
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The most important role of the HYP is linking the nervous system to the endocrine system 

through the anterior (adenohypophysis) and posterior (neurohypophysis) parts of the pituitary 

gland (hypothalamo-pituitary axis); therefore, it supports body homeostasis by regulation of 

endocrine and autonomic behavior (Namwanje & Brown, 2016; Vadakkadath Meethal & 

Atwood, 2005). Neurons in HYP are also necessary for various types of learning and memory 

(Burdakov & Peleg-Raibstein, 2020). Moreover, the HYP has an important role in regulation 

of metabolism, energy expenditure and gastrointestinal tract via the brain-gut-microbiota axis. 

There are suggestions that interaction between mental stress and gut microbiota may affect 

the development of hypothalamic-pituitary-adrenal axis itself (Frankiensztajn et al., 2020).

Androgens can also stimulate morphological maturation of hypothalamic aromatase-

immunoreactive neurons in mouse embryos and, therefore, may influence the synaptic 

plasticity and connectivity in hypothalamic aromatase-system (Beyer & Hutchison, 1997). It 

has been shown that aromatase activity in male HYP neurons is similar to that of females, but 

that males have a higher percentage of neurons expressing aromatase (Beyer et al., 1994). In 

rats, T, but also the nonsteroidal antiandrogen (flutamide), administered both prenatally and 

postnatally affected the development of sexually dimorphic nuclei in HYP by increasing cell 

volume and length (Lund et al., 2000). The T-mediated regulation of the expression of AR, 

ERs and aromatase in the HYP is age dependent. In adolescence, the corticosterone release is 

regulated mostly by conversion of T to E2, while in adulthood greater conversion of T to DHT 

occurs in male rats (Green et al., 2019). 

Sex chromosomes (especially XY) manage early development of HYP neurons. This 

management involves the sex specific neuritogenesis and regulation of the process of 

neuritogenic factor neurogenin 3 expression stimulated by ER signaling in the HYP 
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(Cisternas et al., 2020). It was also shown that neonatal E administration can modify the 

synapse formation of the hypothalamic arcuate nucleus (Arai & Matsumoto, 1978).

E2 promotes many actions in the HYP. For example, it increases the expression of glial cell 

neurotrophic factor in hypothalamic neurons, but not in astrocytes, through non-classical E 

action (calcium, cAMP/PKA) (Ivanova et al., 2002). E2 also stimulates caspase-dependent cell 

death in the developing HYP and regulates tyrosine hydroxylase-labelled dopaminergic 

neurons in the anteroventral periventricular nucleus of the HYP, in which intracellular hormone 

receptors are abundant (Waters & Simerly, 2009). Moreover, neonatal administration of E2 can 

elevate the number of axodendritic synapses in the hypothalamic arcuate nucleus (Matsumoto 

& Arai, 1976). In addition, E2 stimulates axogenesis in male HYP via ERK1/2 and ryanodine 

receptors-dependent intracellular calcium rise (Cabrera Zapata et al., 2019). 

3.3 T and E2 in frontal cortex

Androgens seem to be critical modulators of executive functions in the mesocorticolimbic area, 

including the prefrontal cortex (PFC) (Tobiansky et al., 2018a). Early exposure (postnatal day 

10) to T leads to hyperactivity, higher impulsivity and attention deficit behavior in individuals 

who already have the genetic predisposition for these behaviors (King et al., 2000). During 

puberty, there is a shift of emotional control from the pulvinar nucleus of the thalamus and 

amygdala to the anterior PFC caused by T (Tyborowska et al., 2016). T can also affect emotions 

in the PFC of psychopathic offenders, where patients, especially those with high endogenous 

T concentration, show less emotional control-related anterior PFC activity and anterior PFC-

amygdala coupling during the tests of emotional actions (Volman et al., 2016). High 

concentrations of T have been associated with lower cortical density in the left hemisphere, 

especially in the PFC of prepubertal boys, and these effects are associated with higher 

aggression and lower executive function. In addition, Nguyen et al. (2016) have found that T-
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specific modulation of the covariance between the amygdala and medial PFC could influence 

and predict aggressive behavior from childhood to adulthood (Nguyen et al., 2016). Moreover, 

elevated concentrations of T are associated with increased risk-taking in both genders, 

independent of age. More risk-taking is associated with a smaller orbitofrontal cortex in males 

and larger orbitofrontal cortex in females (Peper et al., 2013).

Unlike higher concentration of T, DHEA is associated with a prepubertal increase in neuron 

density in various cortical regions, which can positively facilitate cortical functions 

such as attention and working memory (Nguyen, 2018). Male anabolic-androgenic steroid 

users have thinner PFC areas involved in inhibitory control and emotional regulation (Hauger 

et al., 2019). Furthermore, long-term anabolic-androgenic steroid use results in executive 

dysfunction, including ADHD symptoms or psychological distress (Hauger et al., 2019), and 

also anxiety, depression, aggressive or antisocial behavior (Kashkin & Kleber, 1989).

The early expression of ERs and GPER1 was detected in the dorsal FC, ventral FC and the HIP 

during the developmental period spanning embryonic to late prenatal (Denley et al., 2018). 

Moreover, prenatal E2 modulates the development of catecholamine activity during neonatal 

period in male FC (Stewart & Rajabi, 1994). Puberty presents another sensitive period in brain 

development. The organizational effects of E2 and progesterone promote the maturation and 

increase of inhibitory neurotransmission in FC in pubertal females (males not studied here) 

(Piekarski et al., 2017). Moreover, Chung et al. (2019) have found age-dependent association 

between E2 concentrations and emotional activity in dorsolateral PFC, where adolescents with 

higher E2 concentrations showed positive reconsideration of negative emotions (Chung et al., 

2019). In adults, the medial PFC together with the dorsal HIP is responsible and critical for 

object memory and spatial memory consolidation mediated by E2 (Tuscher et al., 2019).
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The sex dependent impact on cognitive and synaptic function may be attributed to the fact that 

females PFC contain higher concentrations of aromatase than males. Higher E concentration 

in the PFC protects females against harmful effects of repeated stress in comparison to males 

(Yuen et al., 2016). E2 concentration in FC could also affect executive function, such as 

working memory, organization, planning and sustained attention (Hampson, 2018; Shanmugan 

& Epperson, 2014). Moreover, executive functioning in the PFC depends on E2 concentrations, 

together not only with molecules such as dopamine, norepinephrine, serotonin, and 

acetylcholine, but also with genetic conditions, stress, early life experiences and lifestyle 

choices (Shanmugan & Epperson, 2014). 

3.4 T and E2 in cerebellum

In the CER, Purkinje cells have been identified as the main site of neurosteroid synthesis in the 

cerebellum of most vertebrates (Tsutsui, 2012). Moreover, the expression of AR in Purkinje 

neurons has been found, and the AR concentration can be modified by systemic T, through 

alteration of AR in specific regions, and by sexual behavior-induced reductions of AR in the 

posterior vermis (Perez-Pouchoulen et al., 2016b). The density of AR is also altered in the 

posterior CER after prenatal administration of valproic acid, which influenced the development 

of CER in both males and females age-dependently (Perez-Pouchoulen et al., 2016a).

It has been also reported that the volume of the CER negatively correlates with neurotic 

personality traits in adolescents and young adults, where higher endogenous T concentration 

was related to thicker CER gray matter volume and lower neuroticism score (Schutter et al., 

2017). T seems to have protective effects on cerebellar neurons. For example, T treatment can 

reverse the age-related increase in glial fibrillary acidic protein (GFAP) in the male CER (Day 

et al., 1998). Moreover, T displays protective effect on CER granule cells against the oxidative 

stress through the AR (Ahlbom et al., 2001). Regarding neurodegenerative disorders, T seems 
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to be an appropriate biomarker of spinocerebellar ataxia type 2 progression, where 35% 

reduction of T concentration in male patients was detected (Almaguer-Mederos et al., 2020).

The most potent estrogen, E2, has a higher impact on the developing brain (dendritic 

spinogenesis, synapse formation, cell proliferation and apoptosis, neuronal differentiation) in 

comparison to adulthood (McCarthy, 2008). At the second hour of life, concentrations of E2 

are higher in the FC, HYP, and preoptic area (but not in the CER, HIP and brainstem) of male 

rats, and highest in the female rat HIP in comparison to other brain regions of female rats. 

During the first PND, the concentrations of E2 decreased in the majority of brain regions and 

the only sex difference remained in its hypothalamic concentrations (Amateau et al., 2004).

ER signaling is involved in regulation of cell growth during cell differentiation in the 

developing CER of male and female rat pups (Jakab et al., 2001). Moreover, early childhood 

inflammation in the CER supports synthesis of E2 during sensitive periods (windows), which 

begin at about 1 year of age (Wright et al., 2019). During this sensitive period, the synthesis of 

E2 plays a crucial role in cerebellar Purkinje cells. This process can be disrupted by 

inflammation with long-term consequences, but has been observed only in males (Hoffman et 

al., 2016). Furthermore, endogenous E2 has been shown to affect microglial phagocytosis 

during the sensitive window of postnatal development of the CER (Perez-Pouchoulen et al., 

2019). E2 also regulates the neurotransmission of parallel fibers to Purkinje cells in the CER 

(Hedges et al., 2018). E2 is expressed in cerebellar granule cells (Belcher, 1999) and has a 

trophic effects on these cells in both males and females (Montelli et al., 2017). In the 

experiment with chicken cerebellar granule neurons, E2 can protect these granule cells against 

glutamate-induced toxicity both acutely and long-term, depending on E2 concentrations 

(Sørvik & Paulsen, 2017). The E2 can also modulate motor memory formation in the adult male 

CER (Dieni et al., 2018). De novo synthesized E2 modulates CER functions through cerebellar 
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neurotransmission and CER-dependent learning (Dieni et al., 2020). Furthermore, the 

improvement of cerebellar memory by E2 is mediated through ER (Andreescu et al., 2007).



Table 2. The role of Ts and E2 in HIP, HYP, FC, and CER, brain regions related to cognition – experimental studies

Hippocampus Hypothalamus Frontal cortex Cerebellum

T
es

to
st

er
on

e 
– 

ef
fe

ct
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n 
br

ai
n 

st
ru

ct
ur

es

  development synapse spine density (Leranth 
et al., 2004; Leranth et al., 2003; MacLusky et 
al., 2006)

  neurogenesis (Okamoto et al., 2012; Smeeth 
et al., 2020; Spritzer & Roy, 2020)

  synaptic density in DG in aged males not 
females (Fattoretti et al., 2019)

  pyramidal neuron plasticity in CA1 in males 
(Islam et al., 2020)

  HIP volume in males (Panizzon et al., 2018)

 development of sexually 
dimorphic nuclei (Lund et al., 
2000)

  morphological maturation, 
synaptic plasticity and 
connectivity (Beyer & 
Hutchison, 1997)

 modulation of metabolic circuitry 
in neurons (Sheppard et al., 
2011)

  somatostatin mRNA (Argente 
et al., 1990)

 cortical density (Nguyen, 2018)   gray matter volume (Schutter et 
al., 2017)

 prolonged  of gray matter volume 
in males (Wierenga et al., 2018)

 protection of neurons, reverse 
increased concentration of GFAP 
(Day et al., 1998)

T
es

to
st

er
on

e 
–

ef
fe

ct
 o

n 
be

ha
vi

or

  working and spatial memory regulation 
(Fattoretti et al., 2019; Hough et al., 2017; Koss 
& Frick, 2019)

  episodic memory in males (Panizzon et al., 
2018)

  male sexual behavior 
(McGinnis et al., 1996)

 male aggressive behavior 
(Bermond et al., 1982)

 modulation of executive functions 
(Tobiansky et al., 2018a)

 emotion control after puberty (Tyborowska 
et al., 2016; Volman et al., 2016)

  aggressive behavior (Nguyen et al., 2016)
  risk taking (Peper et al., 2013)
 attention and working memory regulation 

(Nguyen, 2018)

 regulation of the male sexual 
behavior (Perez-Pouchoulen et al., 
2016b)

  neuroticism (Schutter et al., 2017)
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  glutaminergic synapse formation (Jelks et al., 
2007)

  neurogenesis (Smeeth et al., 2020)
  acetylation of BDNF and histone deacetylase 

proteins (Fortress et al., 2014; Tuscher et al., 
2018)

  CA1 dendritic spine density (Frick, 2015; 
Kim et al., 2019b; Koss et al., 2018a; Koss et 
al., 2018b)

 modification of the synapse 
formation of the arcuate nucleus 
(Arai & Matsumoto, 1978)

  glial cell line-derived 
neurotrophic factor concentration 
(Ivanova et al., 2002)

 induction of caspase dependent 
apoptosis and regulation of 
hydroxylase-labelled 
dopaminergic neurons (Waters & 
Simerly, 2009)

  axodendritic synapses and 
axogenesis (Cabrera Zapata et 
al., 2019; Matsumoto & Arai, 
1976)

 inhibitory neurotransmission regulation in 
pubertal females (Piekarski et al., 2017) 

 microglial phagocytosis modification 
(Perez-Pouchoulen et al., 2019)

 cell growth regulation during cell 
differentiation (Jakab et al., 2001)

 granule cells protection (Sørvik & 
Paulsen, 2017)

E
st

ra
di

ol
 –

 e
ff

ec
t o

n 
be

ha
vi

or  regulation of object recognition, memory 
consolidation and spatial memory (Fortress et 
al., 2014; Frick & Kim, 2018; Frick et al., 
2015; Kim et al., 2016a; Tuscher et al., 2016)

  anorectic actions (Shen et al., 
2010)

 control of aggressive behavior in 
females (Hashikawa et al., 2017)

 regulation of object and spatial memory 
consolidation (Carney, 2019)

 positive reconsideration of negative 
emotions (Chung et al., 2019)

 motor memory formation modulation 
in adult males (Andreescu et al., 
2007; Dieni et al., 2018) 

 modulate motor learning (Dieni et 
al., 2020)



4. Conclusions 

SSHs are crucial for the proper development and function of the body in both males and 

females. The research regarding the effect of SSHs on different organs and body systems, 

especially the brain, is moving forward very quickly, and it is important to stay abreast of the 

latest developments. The present review summarizes the latest information on the effects of 

SSHs (e.g. T and E2) via their classical or non-classical pathways at molecular, cellular, and 

tissue levels, with the main focus on brain regions involved in cognition, including the HIP, 

HYP, FC and CER. The role of SSHs in modulation of behavior in both humans and laboratory 

animals is described. SSHs are involved in regulation of many body systems such as 

reproductive, immune, muscular, cardiovascular, skeletal and neural. SSHs affect these 

systems differently via different receptors. Although the actions of intracellular AR are central 

for example for bone healing, glucose and fat metabolism and -amyloid plaque reduction, the 

role of membrane-associated AR is pivotal in process of neuronal apoptosis, cell survival and 

cell proliferation. ER plays an important role in energy metabolism, insulin resistance, fat 

accumulation or atherosclerosis. On the other hand, the fast, non-classical actions of ER result 

in endothelial NO activation, lipolysis, bone growth and beiging of adipocytes. Intracellular 

ER is involved in neural differentiation and in oncogenesis and metastasis suppression, 

whereas non-classical ER signaling can reverse pre-existing heart failure or inhibit 

hypertrophy of cardiomyocytes. Concerning transmembrane GPCR receptors, ZIP9 is crucial 

for male fertility, spermatogenesis, or apoptosis, whereas GPER1 is responsible for proper 

functioning of gonads in both males and females. 

Regarding the effects of T or E2 on HIP, HYP, FC and CER, activation of the appropriate 

receptor triggers changes in both brain structures and behavior. For example, T increases 

synaptic spine density and neurogenesis in HIP, and increases synaptic plasticity and 
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connectivity. In addition, it modulates the morphological maturation of HYP, cortical density 

in the FC and increases the gray matter volume in the CER. In addition, T improves working 

and spatial or episodic memory (HIP), increases male sexual or aggressive behavior (HYP), 

modulations executive functions and control of emotions (FC), and decreases neuroticism and 

regulation of male sexual behavior (CER). E2 increases glutaminergic synapse formation and 

neurogenesis in HIP, modulates synapse formation, increases axodendritic synapses and 

axogenesis in HYP, and regulates neurotransmission in the FC and cell growth in the CER. E2 

also improves object recognition and spatial memory consolidation (HIP, FC), controls 

aggressive behavior and anorectic actions in females (HYP), and regulates modulates motor 

memory formation (CER).

Both classical and non-classical actions of T and E2 in the brain confirm the importance of 

these SSHs in regulation of structural changes in the brain with an impact on behavior and 

cognitive function. Plenty of studies have been published describing the molecular signaling 

pathways of SSHs receptors and their effects on the brain, body systems and behavior. The 

results of these studies have brought new insights into the neurobehavioral effects of T and E2. 

However, additional questions have arisen, such as the sex-, age- and tissue-specific role of 

rapid, non-classical mechanisms involving the GPCR ZIP9 and GPER1 receptors, mainly the 

brain. The answers to these questions will provide a more complete picture of how SSHs 

regulate the functional of neural and non-neural systems.
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Highlights

 SSHs activate not only intracellular/membrane-associated but also transmembrane 

receptors

 SSHs regulate processes in the cardiovascular, immune, muscular or neural systems

 Organizational and activational effects of SSHs affect healthy and diseased brain

 SSHs affect brain structures with an impact on behavior and cognitive function


