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Abstract 

A diagnostic of hypertension increases the risk of erectile dysfunction (ED); likewise, ED can be an 

early sign of hypertension. In both cases, there is evidence that endothelial dysfunction is a common 

link between the two conditions. During hypertension, the sustained and widespread release of pro-

contractile factors (e.g., angiotensin II, endothelin 1, aldosterone) impairs the balance between 

vasoconstrictors and vasodilators and, in turn, detrimentally impacts vascular and erectile structures. 

This pro-hypertensive state associates with an enhancement in the generation of reactive oxygen 

species, which is not compensated by internal antioxidant mechanisms. Recently, the innate immune 

system, mainly via Toll-like receptor 4, has also been shown to actively contribute to the 

pathophysiology of hypertension and ED not only by inducing oxidative stress but also by sustaining 

a low-grade inflammatory state. Furthermore, some drugs used to treat hypertension can cause ED 

and, consequently, reduce compliance with the prescribed pharmacotherapy. To break down these 

challenges, in this review, we focus on discussing the well-established as well as the emerging 

mechanisms linking hypertension and ED with an emphasis on the signaling network of the 

vasculature and corpora cavernosa, the vascular-like structure of the penis. 

Keywords: hypertension, erectile dysfunction, vasoconstrictors, vasodilators, antihypertensive drugs, 

immune system. 

 

“[…] health care professionals need to view ED as a potential cardiovascular risk factor and not just 

a urologic or psychogenic disorder.” Robert A Kloner
1
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Introduction 

Hypertension affects approximately 46% of the adult population in the United States
2
. More than 

80% of hypertensive patients are recommended an antihypertensive medication, but unfortunately, out 

of those, less than 25% have the disease under control
3
, which could explain why hypertension was 

the primary cause of death of more than 78,000 people in 2015
4
. Even though high blood pressure is a 

preventable and modifiable cause of death, hypertensive patients have a shorter life expectancy 

compared to their normotensive counterparts
5
, primarily because of the increased risk of 

cardiovascular diseases and stroke
6
. Additionally, the aftermath of hypertension includes a strong 

association with the development of erectile dysfunction (ED)
7
, a troublesome condition with a 

negative impact on the quality of life of sexually active partners
8
. 

ED, defined as the persistent inability to attain and/or maintain an erection for satisfactory sexual 

intercourse
9
, has a 50% prevalence after the age of 40 in the general population

10
, and it is exacerbated 

during hypertension
11

. High blood pressure affects the blood flow to the penis, a crucial step in the 

process of achieving and keeping an erection
12,13

. Therefore, it is not surprising that ED is a 

significant problem in hypertensive men. The interaction between high blood pressure and ED is not 

simple as ED can be diagnosed as an early marker or as a secondary complication of hypertension
14

 

(Figure 1).  Such an intricate relationship mainly occurs because of alterations in the endothelium, 

which affects smooth muscle tone and contributes to the development and maintenance of both 

conditions. 

The signaling mechanisms involved in the pathophysiology of hypertension and ED are well 

connected, as both conditions are linked to an enhancement in pro-contractile pathways, which, in 

turn, reduces vascular compliance. Furthermore, evidence shows that the immune system is actively 

contributing to the pathophysiology of hypertension and ED (for review, see 
15

 and 
16

, respectively). 

To add another layer of complexity in this interplay, the pharmacotherapy of hypertension can also 

affect erectile function
17

. To break down these challenges, in this review, we focus on discussing the 

well-established as well as the emerging mechanisms linking hypertension and ED with an emphasis 
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on the signaling network of the vasculature and corpora cavernosa, the vascular-like structure of the 

penis. 

 

Vasoconstrictors: the pro-contractile challenges 

The pathophysiology of hypertension strongly associates with an increase in the release of 

vasoconstrictors, especially angiotensin II (AngII), endothelin 1 (ET-1), and aldosterone. Herein, we 

highlight the specific contributions of these molecules, as their sustained release poses a significant 

challenge to the endothelial cells lining the inner wall of blood vessels and the blood-filled sinuses of 

the corpus cavernosum. The resulting endothelial dysfunction not only leads to but also sustains a pro-

contractile state in the vasculature and vascular-like structures, a hallmark of hypertension, and ED.  

 

A. Angiotensin II 

The main vasoconstrictor peptide of the renin-angiotensin system (RAS), AngII, contributes to 

blood pressure regulation in (patho)physiological states through central and peripheral mechanisms. 

Additionally, AngII is locally produced and secreted by the corpus cavernosum
18

, which might 

directly contribute to hypertension-associated ED
19

. In fact, men with ED have increased levels of 

AngII in the systemic and cavernous blood
20

, suggestive of a mechanistic factor triggering penile 

detumescence. Exacerbation in local and systemic production of AngII, and consequently, 

hyperactivation of its type 1 receptor (AT1r) triggers the nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase enzyme, a key source of reactive oxygen species (ROS) in the vasculature and 

corpus cavernosum. An increase in ROS production not only reduces the availability of nitric oxide 

(NO)
21

, but it also stimulates the RhoA/Rho-kinase pathway 
22

, which affects penile erection 

independently of NO release
23

. Interestingly, the silencing of AngII can directly downregulate the 

RhoA/Rho kinase signaling in diabetic penile tissue improving erectile function
24

. Together these two 

factors, (a) reduced NO availability and (b) increased RhoA/Rho-kinase activity, augment smooth 

muscle contraction, favor penile flaccidity, and hinder the treatment of ED in hypertensive patients. 
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Indeed, it is well-established that sustained hyperstimulation of the AngII/AT1r axis in the vasculature 

and vascular-like structures also triggers endothelial dysfunction
25

. Furthermore, AngII has a positive 

effect in the sympathetic nervous system
26,27

, which via -adrenergic receptors intensifies the 

contractile tone of the arterioles and sinusoidal cavities of the corpus cavernosum. Undoubtedly, 

AngII-induced adaptations have pathological consequences for hypertension and ED. To date, this 

pathway, which involves multiple downstream signaling mechanisms, it is still the most widely 

discussed link between these two conditions. 

 

B. Endothelin 1 

Endothelial cells secret endothelium-derived contractile factors such as ET-1, which plays a core 

role in the pathophysiology of human hypertension
28

. This endogenous 21-amino acid peptide not 

only acts as an autocrine hormone via ETB receptors, but it also has a robust paracrine effect in vicinal 

vascular smooth muscle cells (VSMCs) following stimulation of ETA and ETB receptors
28

. ET-1 levels 

are increased during salt-sensitive hypertension, and its blockade lowers blood pressure (for review, 

see 
29

), which further associates with the prevention of end-organ damage in the kidney
30

 and heart
31

. 

Precisely, in the vasculature, ET-1 activates the NADPH oxidase enzyme
32

, and its byproduct, ROS, 

induces the release of ET-1 in a positive-feedback loop
33

. This mechanism, akin to bidirectional 

causality, favors a pro-hypertensive state. Evidence from animal models demonstrates that ET-1 

might be a key target in salt-sensitive hypertension-associated ED
34,35

, primarily because besides 

being responsive to ET-1 by expressing both of its receptors
36

, human penile SMCs are also able to 

synthesize this vasoconstrictor peptide
37

. In isolated penile tissue, ET-1 causes smooth muscle 

contraction by affecting Ca
2+

 influx
38

. Interestingly, an in vitro study performed with human SMCs 

derived from corpus cavernosum showed that ET-1 has a more pronounced effect in Ca
2+

 mobilization 

in cells derived from patients with ED than those with healthy erectile function 
39

. There is also 

evidence that ET-1 potentiates phenylephrine-induced contraction by hyper-activating RhoA/Rho-

kinase in this tissue
40

. Considering that (a) an antagonist of ETA improves erectile function in 

hypertensive animals
35

 and that (b) men with ED have a significant increase in plasma levels of ET-1 
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compared with control subjects
41

, it is reasonable to assume that the ET-1/ETA axis might be a clinical 

target for hypertension-associated ED. Still, additional studies are needed to explore this pathway, 

especially because a recent study showed that an increase of ET-1 per se might not be enough to 

downregulate vascular relaxation
42

. 

 

C. Aldosterone 

There is mounting evidence describing the role of aldosterone in blood pressure regulation by 

inhibition of natriuresis. This steroid-hormone has also been suggested to participate in the 

mechanisms of ED
43

, as a population study uncovered that the plasma levels of aldosterone are an 

independent risk factor for this condition
44

. The link between aldosterone and ED was constructed 

because this hormone induces the production of ROS in SMCs
45

 and the release of inflammatory 

cytokines in penile tissue via NF-B
46

, which is a transcriptional factor that crosstalk with ROS
47

. 

Moreover, aldosterone directly inhibits NO production in vitro by impairing endothelial nitric oxide 

synthase (eNOS)
48

. Since most of the effects of aldosterone are mediated through mineralocorticoid 

receptors, which are expressed in human penile corpus cavernosum
49

, a previous study investigated 

the effects of aldosterone in penile contractility. Interestingly, the authors observed that aldosterone 

does not have a direct impact in contraction or relaxation, but that it augments the effect of 

noradrenaline
50

. Currently, it is becoming evident that aldosterone plays a role in hypertension-

associated ED, but further studies are still needed to elucidate the precise mechanisms involved in this 

process as well as whether targeting aldosterone during hypertension could minimize ED. 

 

Vasodilators: the pro-relaxation challenges 

A major challenge encountered by the vasculature and vascular-like structure of the penis under 

hypertension, besides upregulation of vasoconstrictors, is the reduction in the availability of pro-

relaxation factors, such as the gaseous transmitters NO and hydrogen sulfide (H2S), which highlights 

these molecules as wells as their downstream pathways as potential common targets for hypertension 
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and ED. Also, during hypertension mechanisms that should be activated to counterbalance the pro-

constriction state, including stimulation of the angiotensin (1-7)/Mas receptor axis and the redox-

sensitive transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2), are compromised as 

they elicit, in most cases, an inefficient response. 

 

A. Nitric oxide 

NO is a protective vasoactive gaseous transmitter with a pivotal role in vascular homeostasis. 

Therefore, it is not surprising that a reduction in NO availability is often encountered during 

hypertension, a condition closely associated with the dysfunctionality of small and large vessels. This 

is of major concern because eNOS-derived NO protects against atherosclerosis by inhibiting platelet 

aggregation and attachment, VSMCs proliferation, and leukocyte adhesion (for review, see 
51

). 

Noteworthy, it has also been demonstrated, more than two decades ago, that deletion of eNOS or its 

pharmacological blockade leads to the development of arterial hypertension
52,53

. As discussed above, 

hypertension is accompanied by excessive production of ROS in vascular tissues, mainly via 

stimulation of the NADPH oxidase enzyme. The byproduct of this enzyme, superoxide, reacts with 

NO to form peroxynitrite, which leads to rapid scavenger of NO and likely triggers eNOS uncoupling, 

a key characteristic of endothelial dysfunction. eNOS uncoupling is observed in different animal 

models of hypertension
54–56

, and not surprisingly, it contributes to the development of ED
57–60

.  

NO is the chief mediator of erectile function, and consequently, a reduction in its bioavailability 

causes ED. Both constitutive forms of the enzyme NOS, endothelial and neuronal, which generate NO 

following acetylcholine or neuronal stimulation, play a role in the mechanisms of erection. On the 

other hand, the inducible NOS isoform might contribute to the pathophysiology of ED
61

. During 

sexual arousal, NO diffuses into adjacent SMCs and activates the enzyme guanylate cyclase (GC), 

which is responsible for converting GTP into the second messenger, cGMP. The NO/cGMP pathway 

induces dilation mainly by triggering PKG, which reduces the concentration of cytosolic Ca
2+

, and 

also by inhibiting Rho-kinase. During this process, the enzyme adenylate cyclase is also activated, 
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which in turn, leads to the production of cAMP followed by activation of PKA. Both cGMP and 

cAMP levels are controlled by the enzyme phosphodiesterase (PDE)
62

. The isoform PDE5, which 

hydrolyses cGMP has a direct effect not only upon erectile function but also on blood pressure, as a 

PDE-5 inhibitor prevents against the development of hypertension after infusion of L-NAME
63

. 

Altogether, as mentioned above, the current state of knowledge strongly indicates NO deficiency as a 

link between the pathogenesis and the pathophysiology of hypertension and ED.  

 

B. Hydrogen sulfide 

H2S, an endogenous gaseous transmitter, is the product of the conversion of L-cysteine, especially 

by the enzymes cystathionine -synthase (CBS) and cystathionine -lyase (CSE)
64

. The deletion of 

CSE in mice increases blood pressure and reduces endothelium-dependent relaxation in small 

resistance arteries
65

. Indeed, new evidence strongly supports a role for H2S in the control of vascular 

tone
64

 as it causes relaxation of smooth muscle by affecting multiple mechanisms, including K and L-

type voltage-gated channels, adenylyl cyclase/cAMP, muscarinic receptors, and NO/cGMP axis
66

 as 

well as by inhibiting PDE5
67

. Furthermore, human penile tissue expresses both CBS and CSE, and 

exogenous H2S leads to a concentration-dependent relaxation response in this tissue
68

. Interestingly, 

corpus cavernosum isolated from spontaneously hypertensive rats (SHR) have reduced expression of 

CBS and CSE and impaired endogenous H2S production
69

, which could be a mechanism playing a 

role in hypertension-associated ED. Noteworthy, it has been previously demonstrated that in the 

absence of NO, a critical mechanism for smooth muscle relaxation, H2S plays a compensatory role in 

cavernosal relaxation
70

, and according to the literature, during hypertension, both pathways are 

compromised, posing an enhanced challenge to elicit penile engorgement for satisfactory sexual 

intercourse. It has also been discussed that H2S counteracts oxidative stress by directly scavenging 

peroxynitrite
71

 and by stimulating the transcriptional factor Nrf2
72

. Further investigation is warranted 

to understand the clinical implications of targeting this auxiliary relaxation pathway in hypertensive 

patients, which could open new avenues for the treatment of ED during hypertension. 
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C. Angiotensin (1,7)  

Ang(1-7) is a counterregulatory peptide of the RAS with opposing actions to AngII
73

. It is synthesized 

by the conversion of AngI via endopeptidases or by the conversion of AngII via angiotensin-

converting enzyme 2 (ACE2) (for review, see 
74

). While studies conducted in the 1990s uncovered 

that infusion of Ang(1-7) in SHR lowers blood pressure
75

 and that Ang(1-7) contributes to the 

antihypertensive effects observed following inhibition of ACE or antagonism of AT1r
76,77

, it was not 

until the characterization of the ACE2/Ang(1-7)/Mas receptor axis that this protein was fully 

appreciated. The deletion of the Mas protooncogene prevents Ang(1-7)-mediated effects in the 

kidneys and the aorta
78

. Mas receptor knockout animals have endothelial dysfunction, high blood 

pressure, and imbalance in NO/ROS production
79

. Stimulation of Mas receptor by Ang(1-7) produces 

NO-dependent vasodilation
80

, potentially in a mechanism that involves an increase in eNOS-induced 

NO production through Akt signaling pathways 
81

. The protective effects of the Ang(1-7)/Mas 

receptor axis are also present in penile tissue as a previous study demonstrated that infusion of Ang(1-

7) improves erectile function through NO, that deletion of the Mas receptor impairs erection and 

induces fibrosis, and that infusion of Ang(1-7) reverses salt sensitive-induced ED in rats
82

.  The RAS 

is widely expressed, and during hypertension, there is an increase in its pro-hypertensive axis. 

Therefore, stimulating its protective axis might be an alternative to treat hypertension-associated ED.  

 

D. Nrf2 

Oxidative stress activates the transcriptional factor Nrf2, which, in turn, leads to the expression of 

antioxidant genes and protection against ROS-induced tissue damage
83

. This is mediated, at least in 

part, because Nrf2 increases NO availability by reducing ROS and asymmetric dimethylarginine 

generation and by enhancing eNOS expression and activity
84

. Such effects are of particular interest 

because the improvement in endothelial function following Nrf2 induction has been previously 

demonstrated to protect against blood pressure elevation in AngII-infused mice
85

. Moreover, a 

reduction in the expression of Nrf2 mediates vascular dysfunction in stroke-prone SHR
86

. While there 

is paucity of information regarding the effects of Nrf2 in erectile function during hypertension, 
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evidence from animal models of vascular dysfunction such as diabetes and aging supports the notion 

that targeting Nrf2 might be a therapeutic strategy to manage hypertension-associated ED. In diabetic 

animals, NOX-1 activation not only induces ROS generation, but it also impairs Nrf2, which together 

enhances Rho-kinase signaling leading to internal pudendal artery dysfunction, and in turn, might 

contribute to ED
87

. Corroborating these findings, the activation of Nrf2 with probucol improves 

erectile function by stimulating the HO-1/DDAH/PPAR-γ/eNOS pathway
88

. In aged rats, the Nrf2 

activators, sulforaphane and oltipraz, improves endothelial and erectile function, respectively. 

Sulforaphane also improves relaxation in human penile resistant arteries as well as in human corpus 

cavernosum isolated from patients with ED
89

. To date, the use of Nrf2 activators show promising 

outcomes in pre-clinical studies and might, therefore, have a role in the treatment of human diseases 

that are induced by oxidative stress. 

 

Vascular senescence: more than a chronological challenge for hypertensive patients 

Chronological aging correlates with an increase in cell senescence and the appearance of age-

related diseases
90

. An interesting aspect of some diseases, including hypertension, is the fact that they 

can exacerbate the cell senescence process. For example, recently, hyperactivation of the AngII/AT1r 

axis has been discussed as a key mechanism contributing to premature vascular aging (for review, see 

91
). AngII is the most common and widespread pro-senescent factor in hypertensive conditions

92
, 

which could be due to its potent pro-oxidant effects mediated via activation of the NADPH oxidase 

enzyme. The pathophysiological roles of AngII in the vasculature contribute to vascular remodeling, 

which is a hallmark of chronological aging, and it is enhanced during hypertension. Some features of 

this process include fibrosis, calcification of the vessel wall, and inflammation of perivascular adipose 

tissue (PVAT). Of note here, a recent study has perceptively discussed that PVAT not only affects 

vascular health by secreting anti-contractile factors but also by assisting in arterial stress relaxation
93

.  

Therefore, senescence is a topic of particular importance because it might be a key factor for the 

maintenance of high blood pressure
91

, and consequently, ED. However, there is still limited 
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information about senescence itself as a mechanism inducing ED under hypertension. Because 

chronological aging is a significant risk factor for ED, hypertension-associated senescence of the 

vasculature might also play a role in erectile tissues. Still, further studies are justified to clarify 

potential tissue-specific mechanisms in the corpus cavernosum. 

 

Antihypertensive drugs: a double-edged sword challenge 

Hypertension, in most cases, can be controlled with antihypertensive agents, which are frequently 

associated with undesirable side effects, including ED
94

. The relationship between antihypertensive 

medications and ED has been extensively studied, largely because it might affect the adherence to the 

prescribed therapy regimen resulting in poor management of blood pressure. 

In a recent review, Doumas, Boutari, and Viigimma
17

 insightfully debated the interplay between 

antihypertensive drugs and ED. As they discussed, there is evidence that some antihypertensive 

medications, including diuretics, -blockers, and centrally acting agents, can negatively impact 

erectile function independently of the fact that these drugs are lowering blood pressure. Between these 

drugs, diuretics and -blockers are the ones most often associated with ED
95

.  While the mechanism 

by which diuretics affect erectile function is not entirely clear, it seems that -blockers, especially the 

non-selective ones, contribute to ED by blocking -2 receptors
96

, which consequently leads to a 

higher degree of constriction in penile arteries. Additionally, a study reported lower testosterone 

levels in hypertensive men treated with atenolol
97

. Noteworthy, the literature is not cohesive, and 

conflicting findings have been reported, including a study suggesting that when a patient knows about 

the link between -blockers and ED, this can lead to anxiety, which might cause ED
98

. Interestingly, 

nebivolol, a third generation -blocker with higher affinity for -1 receptors, has a positive effect on 

the erectile response. In fact, it reverses erectile dysfunction in a murine model of diabetes
99

, which 

could be explained by the fact that nebivolol stimulates eNOS activity and because it has antioxidant 

properties
100

. Intricate results are also observed when comparing the effects of AngII receptor 

blockers (ARBs) and ACE inhibitors as ARBs appear to have beneficial effects, whereas ACE 
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inhibitors have a neutral impact on this parameter. As previously discussed, an increase in the 

expression levels of AngII directly impacts erectile function. Therefore, while the results obtained 

with ARBs are somewhat expected, the neutral results acquired with ACE inhibitors are 

counterintuitive. Such results might occur in response to the partial blockade of AngII production
94

. 

Thus, further studies are needed to clarify the impact of ACE inhibitors in erectile function. 

This topic, the use of antihypertensive drugs, is of particular interest because drugs used to treat 

ED target the enzyme PDE5, and therefore, rely on endogenous NO production. While PDE5 

inhibitors have been shown to be a safe pharmacological approach in hypertensive patients taking 

antihypertensive drugs
101

, as we discussed above, these patients have reduced availability of NO, and 

consequently, they might not fully benefit from the use of PDE5 inhibitors. In fact, PDE5 inhibitors 

are ineffective for approximately 30% of the cases, and the presence of comorbid conditions, such as 

hypertension, negatively affects the drug outcomes
102

. Undoubtedly, the management of hypertension 

and ED represents a double-edged sword challenge in the clinical setting where physicians have to 

balance between optimal blood pressure control and patient compliance while preserving the quality 

of life of sexually active patients. 

 

 

 

Immune system activation: a missing challenge for hypertension and ED 

The immune system contributes to the pathophysiology of hypertension
103

. Recently, its innate 

arm was also shown to impair penile function
104–108

. The innate immune receptor, Toll-like receptor 4 

(TLR4), is an emerging link between hypertension and ED as its activation contributes to blood 

pressure regulation
15,109

 and affects cavernosal function in murine models
104,105

. It appears that the 

crosstalk between TLR4, hypertension, and ED occurs mainly through AngII, which is an endogenous 

ligand of the TLR4-MD2 complex
110

. 
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There is a vast literature supporting the role of TLR4 in the pathophysiology of hypertension-

associated vascular dysfunction as stimulation of this receptor leads to oxidative stress, secretion of 

pro-inflammatory factors, hypercontractility of small and large vessels, and alterations in NO 

availability (for review, see 
15,111

). In penile tissue, inhibition of TLR4 in AngII-infused hypertensive 

mice improves cavernosal function by reducing contractile response, oxidative stress, and 

inflammation as well as increasing NO availability
104

. In agreement with these findings, it has been 

reported that overexpression of a TLR4 downstream adaptor, MyD88, worsens ED in hypertensive 

rats by reducing the expression of the eNOS enzyme and increasing cyclooxygenase 2
108

. In DOCA-

salt rats, a neurogenic model of hypertension, blockade of TLR4 lowers blood pressure and improves 

erectile function
112

. Additionally, we have previously suggested and demonstrated that stimulation of 

TLR4 with high glucose impairs Leydig cell functionality
113,114

, which might have a role in the 

pathophysiology of reduced sexual desire via crosstalk with testosterone
115

.  

Regarding sterile inflammation, it has been consistently described in the literature that blockade 

of TLR4 attenuates the release of pro-inflammatory cytokines during hypertension. TLR4 plays a role 

in the secretion of interleukin-6 in the systemic circulation as well as in mesenteric arteries isolated 

from SHR rats
116,117

. Likewise, in Ang-II infused mice treated with a neutralizing peptide against 

TLR4, there is a significant reduction in the levels of tumor necrosis factor- (TNF-) in the blood 

and cavernosal homogenates
104

. There is an extensive literature describing the pivotal role of TNF- 

in controlling penile function
118

 as the infusion of TNF-, and consequently, activation of its TNFR1 

receptor, enhances contraction in penile tissue, worsening erectile function
119

. This process is also 

accompanied by a reduction in the expression profile of the enzymes eNOS and nNOS
119

, which are 

rescued in animals lacking the TNF- gene, increasing corpora cavernosa relaxation
120

. 

It is undeniable that further studies are needed to dissect the pathways involved in the interplay 

between immunity, hypertension, and ED, as well as potential overlapping mechanisms caused by 

dual activation of immune responses. For example, it has been previously demonstrated that 

stimulation of TLR1/2 enhances contractility in penile tissue via crosstalk with RhoA/Rho-kinase
107

, 

but it is unknown whether this heterodimer receptor plays a role in disease-associated ED, including 
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hypertension. Another interesting report in the literature showed that the NLRP3 inflammasome plays 

a dual role in corpora cavernosa relaxation as its inhibition reduced NO-mediated relaxation, and its 

activation enhanced NO-dependent relaxation mechanisms in this tissue
106

. However, it is still 

unknown whether similar results would be obtained in hypertensive animals. 

Thus far, considering the vast literature tying innate immune receptors to the pathophysiology of 

hypertension-induced complications in multiple organs and systems, it is reasonable to assume that 

these receptors are involved in the pathophysiology of vasculogenic ED under high blood pressure 

conditions. Emerging evidence shows that understanding the signaling network of these receptors will 

allow for the development of more tailored therapies, especially during resistant hypertension, which 

could avoid the development of undesirable off-target side effects.  

 

Final considerations 

As discussed in this review, a dysfunctional endothelium plays a prominent role in the 

pathogenesis and pathophysiology of hypertension and ED. A continuous increase in the release of 

vasoconstrictors (e.g., AngII, ET-1, and aldosterone) leads to endothelial dysfunction, which affects 

not only the vasculature but also the corpus cavernosum. In penile tissue, endothelial dysfunction is a 

hallmark for the development of ED, which can be an early sign of systemic vascular disease, 

including hypertension. On the other hand, persistent alterations in the vascular system precede 

hypertension, a significant risk factor for ED. In Figure 2, we highlight pathways shared by 

hypertension and ED via the vasculature and vascular-like structures of the penis. An interesting 

aspect of this figure is the clear emergence of ROS as a hub, which reaffirms that oxidative stress is a 

pathological mechanism with a negative impact for vascular and erectile structures. 

It is noteworthy that while we gathered a consistent body of evidence pointing to endothelial 

dysfunction, substantiated by the increased release of vasoconstrictors and reduced availability of 

vasodilators, as a common challenge for hypertension and ED, there is, still, much to be understood 

regarding the overlapping pathways of these conditions. Over the last decade, it is becoming widely 
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accepted that the innate immune system contributes to the pathophysiology of vascular-related 

diseases. The literature consistently shows that targeting these receptors, mainly TLR4, improves 

vascular and erectile function. However, while it seems that the receptors of innate immunity impact 

the disease progression, we are only now uncovering their part in hypertension and ED.  Such 

contributions to our understanding shift the way we are approaching these diseases, and ultimately, 

will open research avenues for the development of new therapeutics, that hopefully, will be more 

effective in the management of both conditions. 
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Figure 1. Summary of the interplay between hypertension and ED. A sustained increase in the release 

of vasoconstrictors (e.g., AngII, ET-1, aldosterone) leads to endothelial dysfunction, which affects the 

corpus cavernosum and the vascular system. In penile tissue, endothelial dysfunction is a hallmark for 

the development of ED, which can be an early sign of systemic vascular disease, especially 

hypertension. On the other hand, persistent alterations in the vascular system precede hypertension, a 

major risk factor for ED.  

 

Figure 2. Overview of the major pathways shared by hypertension and ED. During hypertension, 

there is an increase in the release of vasoconstrictor peptides (e.g., AngII, ET-1, aldosterone), which 

via specific receptors trigger NADPH oxidase-induced ROS. In fact, ROS is a hub mechanism that 

crosstalks with many pathways that are important for the maintenance of vascular and erectile 

function. An increase in the release of ROS activates the RhoA/Rho-kinase pathway, associates with 

premature vascular aging, stimulates the transcriptional factors Nrf2 and NF-B, and impairs NO 

availability. Simultaneously, activation of TLR4 also induces the stimulation of NF-B, which not 

only affects ROS but also induces the release of pro-inflammatory mediators. Additionally, while 

ROS stimulates Nrf2, the activation of Nrf2 per se leads to the expression of antioxidant genes, which 

aims at inhibiting the effects of ROS. Nfr2 is also stimulated by the gaseous transmitter H2S, which 

has many compensatory functions, including the inhibition of the PDE5 enzyme. In hypertensive 

conditions, it also appears that the Ang1-7/Mas receptor axis, which counterbalances the effects of the 

AngII/AT1r axis, elicits an inefficient response. 
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