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ABSTRACT

Background. The role of testosterone inimproving sexual symptomsin men with hypogonadismis well
known. However, recent studies indicate that testosterone plays animportantrole in several metabolic
functionsin males.

Methods. Multiple Pubmed searches were conducted with use of terms, testosterone, insulin sensitivity,
obesity, type 2diabetes, anemia, bone density, osteoporosis, fat mass, lean mass, body composition.
This narrative review is focused on detailing the mechanisms that underliethe metabolicaspects of
testosterone therapyin humans.

Results. Testosterone enhancesinsulin sensitivity in obese men with hypogonadism by decreasing fat
mass, increasing lean mass, decreasing free fatty acids and suppressing inflammation. Atacellularlevel,
testosterone increases the expression of insulin receptor B subunit, insulin receptor substrate (IRS)-1,
AKT-2 and Glucose transportertype 4 (GLUT-4) in adipose tissue and adenosine 5’-monophosphate-
activated protein kinase (AMPK) expression and activity in skeletal muscle. Observational studies show
that longterm therapy with testosterone prevents progression from prediabetes to diabetes and
improves hemoglobin Alc. Testosteroneincreases skeletal muscle satellite cell activator, fibroblast
growth factor-2 and decreases expression of muscle growth suppressors, myostatin and Mrf4.
Testosterone increases hematocrit by suppressing hepcidin and increasing expression of ferroportin
along with that of transferrin receptor and plasmatransferrin concentrations. Testosterone also
increases serum osteocalcin concentrations, which may account for its anabolicactions on bone.

Conclusions. Testosterone exerts aseries of potent metaboliceffects which include insulin sensitization,
maintenance and growth of the skeletal muscle, suppression of the adipose tissue growth and
maintenance of erythropoiesis and hematocrit.
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Testosterone, the major male hormone, has well established functions as ahormone regulating sexual
function, including sexual performance, erectile function andlibido (1). However, italso regulates other
functionsincluding muscle mass and muscle strength. This property has been abused by body builders,
weightlifters and athletes foralongtime. In addition, itis known that testosterone deficiency leads to
anemiaand testosterone therapy increases hemoglobin concentrations (2). Itis known that males with
hypogonadism suffer from osteoporosis which also improves with testosterone treatment(3). In
addition, ithas beenshownthatthe hypogonadal state in malesis associated with insulin resistance and
that testosterone replacement restores insulin sensitivity (4). Clearly, therefore, testosterone has
multiple metabolicfunctions beyond sexual function. This review covers these areas and the recently
discovered molecular mechanismsinvolved underlying these functions.

To performthe review, we searched Pubmed using terms, testosterone, insulin sensitivity, obesity,
type 2 diabetes, anemia, bone density, osteoporosis, fat mass, lean mass, body composition. Only
studies conducted in human males were considered. This review is not meant to be description of
clinical dataobtained on above parametersintrials of testosterone replacement. Excellent reviews on
that topicare available (1, 5). Instead, we have focused on detailing the mechanisms that underlie the
metabolicaspects of testosterone therapyin humans.

Insulin sensitivity

Marin et al were the firstto demonstrate that testosteroneincreased insulin sensitivity, using
euglycemichyperinsulinemicclampsinthe obese, and thatthere was an inverse relationship between
BMI and plasmatestosterone concentrations (6, 7). The relationship of insulin resistance, obesity and
low testosterone concentrations was confirmed by Pitteloud et al (8). Afterthe discovery of a high
prevalence of hypogonadotropic hypogonadism (HH) in type 2 diabetes (9), Kapooretal (10) confirmed
that insulin resistance tends to fall aftertestosterone replacementin this group of patients. However,
the assessment of insulin resistance was carried out by using Homeostatic Model Assessment-Insulin
Resistance (HOMA-IR), which may not accurately measure insulin resistance in patients with diabetes.
Most recently, Dhindsa et al (4) demonstrated that patients with hypogonadotropichypogonadism and
type 2 diabetes have anincrease of 35% in insulin resistance when compared with eugonadal patients
with type 2 diabetes, as observed after euglycemic hyperinsulinemicclamps. Thisincrease ininsulin
resistance was reversed following testosterone replacement.

The mechanisms that mediate the effect of testosterone oninsulin sensitivity are multi-fold and likely
intertwined. Testosterone treatmentin men with HHand diabetes caused aloss of 3.3 kg of total fat
mass and an increase inlean body mass of 3.4 kg over 24 weeksin men with hypogonadism and type 2
diabetes(4). There was no change in insulin sensitivity at 3 weeks, buta 32% increase was observed at
24 weeks (figure 1). There was adecline in circulating free fatty acids, starting at 15 weeks of
treatment(4). Thiswould tend to enhance insulin signaling since free fatty acids are known toinduce
oxidative and inflammatory stress and tointerfere with insulin signal transduction(11). Adipose tissue
biopsiesfrom patients with hypogonadism showed animpairmentininsulin signal transduction as
reflectedinthe reduction of the expression of insulin receptor f subunit, insulin receptor substrate
(IRS)-1, AKT-2 (protein kinase B) and Glucose transportertype 4 (GLUT-4) (4). While there was a
reductionin mRNA of all four, a diminutionin protein expression was demonstrated onlyininsulin
receptor B subunitand AKT-2since western blots could not be obtained for IRS-1and GLUT-4.
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Testosterone administration for 24 weeks reversed all four molecular defectsin parallelwith the
restoration of insulin sensitivity (figure 2). Most recently, it has also been shown that testosterone
replacementleadstoanincrease inadenosine 5’-monophosphate-activated protein kinase (AMPK)
expression and phosphorylation (12). AMPKis known to stimulate AKT-2and toincrease the expression
of GLUT-4 in turn(13). This would potentially increase glucose transport. AMPK is known to mediate the
beneficial glucosetransport effects of metformin and exercise(14). This action would be additive to that
of theimprovementininsulin signaltransduction following testosterone replacement described above.

The insulin sensitizing effect of testosterone is comparable to the other well-known interventions that
increase insulin sensitivity (as measured by hyperinsulinemic euglycemicclamps), such as weightloss,
exercise, ortreatment with thiazolidinediones. Pioglitazone administration in patients with type 2
diabetesincreasesinsulin sensitivity by ~30% (15-17). Similar to testosterone, Pioglitazone reduces
circulating free fatty acids and increases AMPK phosphorylation in skeletal muscle (17). The effect of
weightloss onincreasinginsulin sensitivity is proportional to the degree of weightloss, and canrange
from 20-200% (18, 19). Afew weeks of exercise can enhance insulin sensitivity by ~20% in previously
sedentary obese adults, independently of weight loss (20, 21). However, the main effect of exercise on
glucose uptake inthe working skeletal muscleisinsulin-independentand is partly mediated via AMPK
(22). Aninterestingaspectto consideris that testosteronetreatment may improve fatigue and physical
activity whichwould alsoincrease lean mass and AMPK activity. Testosteronetherapy, however, does
not improve fatigue orenhance routine physical activity in elderly men(23). The patientsin above
mentioned studies were not part of an exercise plan. Thus, itis not likely that undocumented increase in
exercise contributed markedly to the changesin body composition, insulin sensitivity and AMPK changes
described above. Nevertheless, thisissue should be considered in planning future trials in this area.

Inthe context of insulinsignaltransduction, itisimportant that testosteronealso exerts an anti-
inflammatory effect with the suppression of C-reactive protein (CRP), Interleukin (IL)-1B and tumor
necrosis factor (TNF)- a.in the serum, IKKPB (inhibitor of nuclear factor kappa-Bkinase subunitbeta),
SOCS-3(suppressor of cytokine signaling) and PTEN (Phosphatase and tensin homolog) in mononuclear
cellsand TLR (Toll-likereceptor)-4and PTP-1B (protein-tyrosine phosphatase 1B) in adipose tissue (4).
These inflammatory mediators interfere with insulin signaling (figure 2). SOCS-3interferes with insulin
signal transduction by causing the ubiquitination and proteasomal degradation of IRS-1, while IKK3
induces serine phosphorylation of IRS-1and thus preventsinsulin signal transduction though IRS-1. PTP-
1B dephosphorylates the insulin receptor afterthe auto-phosphorylation by tyrosine kinase and thus
limitsinsulinsignaling. TNFais known to interfere with insulin signaling at the level of IRS-1. IL-1B, on
the otherhand, is toxicto the B-cellinthe pancreaticislet. Thus, the anti-inflammatory action of
testosterone may contribute notonly to the reversal of insulin resistance but also to the preservation of
the B-cell and insulinogenesis. This combination of actions potentially has a comprehensive anti-diabetic
effect. The classicinflammatory drug, salsalate, lowers HbAlcby 0.4% and modestlyincreasesinsulin
sensitivity by 15% or less (24-26).

The above discussion lists various mechanisms that contribute to the insulin sensitivity after
testosterone therapy: loss of subcutaneous fat, gain in muscle mass, decrease in circulating free fatty
acids and suppression of inflammation (table 1). Since these changes occur simultaneously, itis not
possible totease out the relative contributions of either mechanismto overall insulin sensitivity. As
showninfigure 1, there was no change ininsulin sensitivity at 3 weeks after starting testosterone. Thus,
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itislikely thatthe insulin sensitization of testosterone is not animmediate effect and may be mediated
by changesinbody composition. The reductionin AMPK provides an additional pathway for glucose
uptake in muscle. Areductionin free fatty acids may reflect reduction of lipolysis by testosterone. This is
an area that needs further molecularinvestigation. Testosterone therapy consistently diminishes
subcutaneous fat mass. However, longer duration of treatment may be needed to demonstrate a
decrease in hepaticorvisceral fatin obese men.

Itis importantto mention that while the insulin sensitizing effect of testosterone has been
consistently observedin obese insulin resistant men, studiesin non-obese men orinthose with low
normal testosterone (instead of subnormal) concentrations sometimes fail to show animpacton insulin
sensitivity (27-29). A trial of testosteronereplacementin 790 elderly hypogonadal men showed a small
reductionin HOMA-IR after one year of transdermal testosterone therapy (30). In contrast, two studies
inelderly men with low normal testosterone showed no change ininsulin sensitivity aftertestosterone
administration for2-3years (28, 31). These studies were composed largely of men with low normal
testosterone (instead of subnormal) concentrations. It thus appears that the “inconsistency” inthe
effect of testosteronereplacement oninsulin sensitivity arises from studying testosterone replacement
inmen who are neither hypogonadal norinsulin resistant (32).

Approximately 50% of total testosterone in the circulationis tightly bound to sex hormone binding
globulin (SHBG), aglycoproteinthatis produced inthe liver. Epidemiological studies consistently
demonstrate aninverse association of SHBG with obesity, insulin resistance and type 2 diabetes (33, 34).
In fact, SHBG polymorphisms that predict higherlevels of SHBG are protective against type 2diabetesin
both males and females (35). Since obesity is associated with lower SHBG concentrations, thereisa
physiological lowering of total testosterone concentrationsin obese men. Hence, free or bioavailable
(non-SHBG bound) testosterone measurementis essential in obese men to assess the gonadal status. It
isimportantto clarify thatinsulin resistant states such as obesity, type 2 diabetes and metabolic
syndrome in males are associated with lower free and bioavailable testosterone concentrations (5). A
guarterof obese menand a third of men with type 2 diabetes have subnormal freetestosterone
concentrations (9, 36). The insulin sensitizing effect of testosteronetherapy is, therefore, especially
pertinentto this population.

Diabetes and Prediabetes
The effects of testosteronetherapy on glycemiccontrol in men with type 2diabetes has been evaluated
insome studies. Kapooretal showed adecrease infasting glucose (28 mg/dl) and HbA1c (0.37%) as
compared to placebo with 3 months of testosterone therapyinasmall trial (37). A trialin men with new
onsettype 2 diabetes with transdermal testosteronealso showed adecrease in HbAlcfrom 7.5% to
6.3% overa period of one year(38). This was in conjunction with dietand exercise, but no hypoglycemic
medications. Arandomized placebo controlled trial in men with type 2diabetes showed a placebo
subtracted decrease of 0.7% in HbAlc (from baseline HbAlc of 8%) after one year of intramuscular
testosterone therapy(39). In contrast, HbAlc does not change significantly after shortterm
testosterone therapyin menwith well controlled diabetes (Alc<7%) (4, 40).

Indeed, arecent study has shown that longterm testosterone therapy in patients with hypogonadism
may reverse prediabetes altogetherand normalize glucose homeostasis. Yassin et alreported on the
effects of long-term (8 years) testosteronetherapy in men with prediabetes and hypogonadismin an
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observational registry study (41). The investigators compared 229 men with hypogonadism whowere
treated with testosterone undecanoate with 87 men who had opted against testosterone therapy
(untreated controls). At baseline, 51% of these men were obese, 43% were overweightand only 6%
had normal weight. Testosteronetherapy resulted in weightloss and reduction in waist circumference.
Testosterone Normal glucose regulation (HbA;. <5.7%) was restored in 90% of the testosterone treated
patients. In contrast, 40% of untreated patients progressed tofrank diabetes with HbA,.>6.5%. These
data suggestthatlong-term testosterone therapyin men can preventthe progression of prediabetes to
overtdiabetesand reverse the prediabetes state into a normoglycemicstate. .

The most recent study on the effect of testosterone replacementin HH patients with type 2 diabetes
has demonstrated encouraging results (42). In this real world prospective registry study, 178 men who
were receiving longacting testosterone undecanoate were compared with 1778 men who had subnormal
testosterone but were not treated with testosterone. The mean follow-up was 8 years and maximum
follow-up was 11 years. The mean age at start of the study was 62 yearsin testosteronegroup and 64
yearsin untreated group. Testosterone replacementresultedin asustained reduction of HbAlcand
fasting plasmaglucose concentrations and HOMA-IR. Ninety % of patients achieved an HbAlc of <7%,
83% achieved <6.5% and 46% achieved <5.7% while 34% had total remission of diabetes with freedom
from all anti-diabetes drugs. During the further follow up of 2.5 years, there was no recurrence of
diabetesinthe group with remission. In contrast, those men with diabetes and HH who were not
treated had a steady increase in glycemiaand HbAlc with an increase in HOMA-IR.

Loss of adiposity

Testosterone has beenshownto exertaninhibitory effect on the incorporation of dietary fatinto
adipose tissue, especially the intra-abdominal fat, both omental and retroperitoneal. Male subjectswere
given 250 mg of testosterone intramuscularly 5 days prior to abdominal surgery. Marin et al
demonstrated that when milk fat combined with radiolabeled oleicacid was administered 24 hours prior
to surgery, the amount of label found in omental and retroperitoneal fat was significantly diminished
while thatin the subcutaneous fat wasincreased following testosterone (43). Clearly, thus, testosterone
has an inhibitory effect on fat depositioninvisceraladiposetissue. Another study examining the effect
of transdermally administered testosterone over the period of one year demonstrated thatitreduced
intra-abdominalfat but not subcutaneous ortotal body fat. In addition, there was asignificantincrease
inthe skeletal muscle mass (44). In a recent study, patients with HH and diabetes had significantly
highertotal body fat when compared with eugonadal patients with diabetes (4). When these patients
were treated with testosterone for 6 months, total body and truncal subcutaneous fat was reduced
while the lean body mass was increased by a similaramount. Therefore, the body weight did not
change. A longer duration of testosterone therapy is needed forareductionin body weight. Inan
observation study of obese men with hypogonadism, 8 years of testosterone therapy reduced body
weight by ~20% and waist circumference by 10% (45).

At a cellularlevel, in vitro, testosterone has been shown to suppress adipocytic differentiation of 3T3
preadipocytes through the activation of Wnt pathway with an increase in the expression of B-catenin
(46). Testosterone seems to promote the conversion of mesenchymal pluripotent stem cellsinto
myogeniclineageandinhibittheir conversion to adipocytes (47). These mechanisms have yetto be
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confirmed in humans. Testosterone may also contribute to loss of adiposity through increased oxidation
of fatty acids by the skeletal muscle whose growth is stimulated and sustained by testosterone.

A recentstudy has shown an impressive effect on body weight following testosterone therapy in
patients with HH(48). Treatment with testosterone in HH patients led to weight loss which was
proportional tothe weight at baseline, beingthe greatestin the obese (20%), intermediate in the
overweight (10%) and the leastin those with normal weight (5%) when compared to those not treated
with testosterone overafollow up period of 11 years. In addition, there was a proportionate reduction
in waist circumference, systolic, diastolic, pulse blood pressures and plasmalipids. Associated with these
changeswas a reductioninthe occurrence of acute myocardial infarction, stroke and death. These
reductions were also the greatestin the obese, intermediate inthe overweightandthe leastinthe
normal weight group.

Role of estrogensin regulating body fat in males

Estrogens have a role in mediating the anti-obesity effects of testosterone. Estrogen receptor deletion in
mice leads to weight gain and obesity (49). Men rendered hypogonadal with injections of depot
gonadotropin-releasing hormoneagonist lose fat when given testosterone, but they do notlose body fat
if they are treated with an aromatase inhibitor whichis responsible for converting testosteroneto
estradiol (50). These findings are consistent with the observation that hormone replacementtherapyin
women leadsto less weight gain after menopause. In this context, itis relevant that male patients with
diabetes have adiminished expression of estrogen receptorand aromatase, both of which are restored
followingtestosteronereplacement (51). Consistent with these observations, estradiol concentrations
are lowinmenwith HH and type 2 diabetes, and increase after testosterone administration (52).

Muscle growth

The effect of testosterone on skeletal muscle has been known foralongtime and has been abused by
body builders and athletes to develop extramuscle bulk, strength and speed (53). Testosterone therapy
increases the number of satellite stem cells and net protein balance, supporting muscle hyperplasiaand
hypertrophy (54, 55). A study in healthy men who had beenrendered transiently hypogonadal by GnRH
agonistandthenreplaced with intramusculartestosterone for 6 months showed anincrease in satellite
cellnumber(54). There was an increase in the cross-sectional area of myofibers and the number of
myonuclei per myofiber, suggesting that testosterone-induced muscle hypertrophy is accompanied by
addition of new nuclei from satellite cells. Recentwork has shown thatthe expression of FGF2
(fibroblast growth factor2) and FGFR2 (fibroblast growth factor receptor 2), one of its major receptors,
isdiminishedin patients with HHand type 2 diabetes (56). FGF2is known to mediate the growth and
differentiation of skeletal muscle through the stimulation of satellite cells integral to the muscle (57).
These cells are responsible forthe growth of the skeletal muscle during development and for repair
followinginjury laterinlife. The replacement of testosterone led to the restoration of normal levels of
expression of FGF2 but not FGFR2 (56). In addition, there was anincrease in plasma concentrations of
FGF2. In contrast to FGFR2, the expression of the otherreceptor, FGFR1was notaltered. Clearly, thus,
testosterone deficiency leadstoareductionin FGF2 and FGFR2 expression and the replacement of
testosterone restores FGF2 expression whilealsoincreasing the plasma concentrations of FGF2.
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Inaddition tothis, there was also an increase in plasma concentrations of IGF1, a general growth
factor which also promotes muscle growth (56). The increase in IGF1 was significantly related to that of
FGF2. On the other hand, following testosterone replacement, there was a suppression of two key
inhibitors of muscle growth, myostatin and Mrf4 (myogenicregulatory factor4) (56). There was no
change in the expression of two major promoters of muscle growth, myogenin or myoD, inthe
hypogonadal state. Nor was there a change aftertestosterone replacement. Clearly, the action of
testosterone onthe development of skeletal muscleis acomplex one and will require further
elucidation, especially in the context of the interaction of the various factors described above.

Testosterone may also potentially have an effect on the myocardium. One study investigating the
effect of testosterone over 12 weeks has shown that the administration of testosterone to patients with
congestive cardiacfailure improves their mobility and muscle strength (58). However, these benefits
were independent of any improvementsin left ventricular ejection fraction and myocardial function and
could be attributed to better skeletal muscle function allowing for more mobility. Long term studies are
requiredto assess anindependent effect on myocardial function.

Testosterone modulates androgen and estrogen receptor and aromatase expression

The deficiency of ahormone leads to the expectation thatthere willbe acompensatory increase inits
receptorexpression so as to maximize the effect of the limited hormoneavailable. However, in patients
with HH and type 2 diabetes, the expression of androgen receptor was found to be diminished both in
mononuclearcellsandinadipose tissue (51). This was also associated with adecrease in the expression
of estrogen receptorinthe adipose tissue which was again contrary to expectations since estradiol
concentrations were also diminished in these patients. Inaddition, there was also areductioninthe
expression of aromatase, the enzyme which converts testosterone to estradiol. Testosterone
replacementledtotheincrease/restoration of androgen receptor, estrogen receptorand aromatase.
The men with hypogonadism also had lower protein content of androgen receptorin the total cell
lysates of skeletal muscle and inthe nuclei of mononuclear cells. Therewas anincrease inthe androgen
receptorfollowing testosterone therapy. Thus, the state of HH leads not only to a lack of testosterone
and estradiol butalsotoa deficiencyintheirrespectivereceptors and thus possibly the ability of the
patienttorespond to these hormones. Testosterone replacement reverses these defects to potentially
restore these actions. Itappears that the tissue androgen and estrogen receptors follow the availability
of theirligands: decreasingin the hormone deficient state and increasingin the hormone replete state.
It isnot known if these changes have arole in mediating the signs and symptoms of hypogonadism and
the response to hormone replacement therapy.

Hematocrit

The stimulatory effect of testosterone on hematocrit has been known foralongtime (59). Hypogonadal
states are characterized by a mild normocyticnormochromicanemiawhich reverses following
testosterone treatment (2). The mechanism underlying this effect has been thoughtto be due to an
increase in erythropoietin synthesisin the kidney. However, more recently, ithas been shown that
hepcidin concentrationis suppressed by testosterone (60, 61). Hepcidin suppresses the expression of
ferroportin, the membrane protein responsible for the absorption of iron by the enterocyte and the
release of iron stored inthe monocytes and macrophages of the reticuloendothelial system (62). Thus,
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ferroportin has a cardinal role inincreasing the bio-availability of iron. Recentinvestigations have also
revealed that with the suppression of hepcidin, testosteronetherapy increases the expression of
ferroportin along with that of transferrin receptorand plasma transferrin concentrations (63). Plasma
ironand ferritin concentrations fall. These findings are consistent with the release of iron from the
stores withincrease inferroportinand the transport of iron to erythropoieticcells through transferrin
and the uptake of iron by erythropoietictissues through the transferrin receptor. These effects, in
additiontothe stimulatory effect of testosterone on erythropoietin production, enhance hemoglobin
production following testosterone therapy.

Bone Growth

The state of hypogonadisminthe maleisassociated with osteoporosis (64). The response to
testosterone replacementis dramaticin adolescents and young men, asreflectedin BMD. In a registry
study in45 men with a mean age of 5317 years and hypogonadism and osteoporosis receiving
testosterone therapywith testosterone undecanoate forup to 6 years, almostall men experienced a
change in diagnosis from osteoporosis to osteopenia. Thisimprovement clearly depended on duration
of treatment with progressive increase of T-scores overthe full observation time (65). Since the
demonstration that the congenital deficiency of estrogen receptor (66) or aromatase (67) leads to
profound osteoporosisinthe male, it has been assumed thatthe metabolicactions of testosteroneon
the bone are mediated by estradioleveninthe male. The major known actions of estradiolon the bone
are largely thoughtto be due to the suppression of osteolysis and osteoclasticactivity (68).. One study
carried out on obese patients with HHshowed that testosterone suppressed the increasein bone
breakdown that occurs after caloricrestriction induced weightloss (69).

Men with type 2 diabetes have ahigherrisk of hipand non-vertebralfractures than non-diabetic
men (70, 71). Paradoxically, the BMD s higherby ~5% in men with type 2 diabetes as compared to men
without diabetes, possibly because they have a higher body weight and lean mass than non-diabetic
men (72). A low bone turnover state existsin type 2 diabetes, and this contributes to the high fracture
risk (73). Estradiol concentrationsin men with type 2 diabetes are positively related to bone mineral
density at hip and spine (74). In contrast, testosterone concentrations in these men were positively
associated with bone strength index. Thisvalueis calculated using femur geometry and bone mineral
density, and it provides a measure of resistance to bending. Testosterone therapy induces adramatic
increase in plasma osteocalcin concentrations consistent with anincrease in osteoblasticactivity in
patients with HHand type 2 diabetes(74). The magnitude of thisincrease was similarto that following
the administration of sodium fluoride or afterteriparatidein patients with osteoporosis (75, 76). This
was accompanied by a minortransientincrease in CTx, consistent with anincrease inbone turnover
necessary fornew bone formation. This study also reported that there was no change in plasma
concentrations of sclerostin and receptor activator of nuclearfactor kappa-Bligand (RANKL), orthat of
RANK expression. Thus, the beneficial action of testosterone on the bone may be due to a combination
of osteoblasticand osteoclasticactivity. These actions are potentially usefulin reducing fracture riskin
men with type 2 diabetes.

Androgen deprivation therapy
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The metabolicactions of testosterone delineated above have been described in the setting of
testosterone therapy. Itisinformativeto review the metabolicchangesin men aftera drasticreduction
of testosterone. Androgen deprivation therapy (ADT) with long acting GnRH agonistsis routinely used as
adjuvanttherapyinintermediate and highrisklocalized orlocally advanced prostate cancer. The
benefits of ADTin prostate cancer have to be balanced againstthe adverse metabolic effects of its
treatment. Thereisan increase insubcutaneous fat mass by 3.5 kg and a decrease inlean mass of 1.5 kg
after 12 months of ADT (77, 78). Insulin sensitivity (measured by oral glucose tolerance testand HOMA-
IR) declines by 13% following ADT(79, 80). It is assumed that the increase in fat mass or decrease inlean
mass that happens after ADT account forthe change ininsulin sensitivity (78). These adverse effects of
ADT are the likely reason for the increased incidence of diabetesin menreceiving ADT. Ina large
retrospective cohort study, menreceiving ADT had 60% higherrelative risk of developing diabetes over
5 years(81). The absolute risks were 2.5versus 1.6 events per 100 person-years.

These effects of ADT bring forth the consistency in metabolicactions of testosteronein various clinical
scenarios: a) the gradual decline of testosterone in obesity and aging, b) the treatment of hypogonadism
and c) the precipitous and dramaticloss of testosterone after ADT.

Concerns with testosterone treatment

Concernsregarding testosterone replacement therapy in elderly men generally relate to prostate
hypertrophy, prostate cancer, cardiovascular events, erythropoiesis leading to polycythemia, lowering of
HDL cholesteroland fluid retention.

Prostate: Men with subnormal testosterone concentrations have asmaller prostate and lower prostate-
specificantigen (PSA) concentrationin the blood than men with normal testosterone concentrations
(82). Of note, men with obesity ortype 2 diabetes are known to have ~ 20% lower concentrations than
lean men withoutdiabetes (83). The lower PSA concentrations may a combination of the lower
testosterone concentrationsin obesity and type 2diabetes, as well as the larger plasmavolumes and
hence hemodilution (84). PSA concentrations are lowerin hypogonadal than in eugonadal men with
type 2 diabetes (0.89vs. 1.1 ng/ml) (85). Testosterone is trophicto prostate and therefore, anincrease
intestosterone concentrations leads to a “normalization” in prostate size and PSA concentrations (82).
Longerstudies designed specifically to assess prostate risks aftertestosteronetherapyin elderly men
have not yetbeen conducted. While testosteronetherapy has notbeenfoundtoincrease the incidence
of benign prostatichyperplasia (BPH) ora significant exacerbation of voiding symptoms attributable to
BPH, itis prudentto avoid testosterone therapyin menwith severe urinary symptoms till the BPH has
been successfully treated (1).

Prostate cancer iswell known to be, in the majority of cases, an androgen-sensitive disease.
Testosterone therapyisanabsolute contraindicationin men with prostate cancer. However, there is no
compellingevidence that testosterone has a causative role in prostate cancer. Epidemiologically,
hypogonadal men do nothave a lowerincidence of prostate cancerthan eugonadal men (86). The
prevalence of prostate cancerin many studies on patients receiving testosterone therapy was similarto
that inthe general population (86, 87). However, these studies were not designed to evaluatethe
incidence of prostate cancerfollowing testosterone therapy. Men on testosteronetherapy should be
screened for prostate canceraccording to the local guidelines.
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Erythrocytosis: Erythrocytosisis aknown adverse effect of testosterone administration. Arandomized
placebo-controlled trial of transdermal testosteronetherapy forone yearin elderly menfounda2%
incidence of polycythaemia(2). The effectis dose dependentandis seen more commonly in those with
supra-normal levels of testosterone. Hematocrit above 55% increases blood viscosity and could
exacerbate vasculardiseasein the coronary, cerebrovascularor peripheral vascular circulation. Periodic
haematological assessmentistherefore indicated (1). Inthose with other causes of secondary
polycythaemia (such as smokingorsleep apnoea), dose adjustment and/or periodic phlebotomy may be
necessary to keep the haematocrit below 55%.

Cardiovascularevents and testosterone therapy: Epidemiological studies have shown that men with low
testosterone are more likely to die from a major cardiovascular event (88). However, norandomized
control trial (RCT) has been conducted to examine cardiovascularoutcomesin following testosterone
therapy. Cardiovascular outcomes have been sporadically reported in RCTs of testosterone therapy
designedforotherendpoints (such as muscle strength, glucose control) but these trials were
underpoweredtolook at cardiac events (5). Meta-analyses of these trials do not find a consistent effect
of testosteronetherapy on cardiovascular events (89, 90). Increased “cardiovascular related events”
were noticedina trial of 209 elderly frail men, who had been randomly assigned a placebo gel or
testosterone gel for6months (91). Atotal of 23 subjectsin the testosterone group, as compared with 5
inthe placebo group, had cardiovascular-related adverse events, includingone death in the treatment
groupwhichledto the halting of the trial. It should be noted, however, that the study was not designed
to investigate cardiovascular events and the majority of events would not be included as an “event”in
any cardiovascular study due to questionable clinical significance, including peripheral edema,
hypertension, and tachycardia, as well as non-specificEKG changes. Otherstudiesinelderly population
also have not shown an increase in cardiacevents after testosterone replacement(23, 92-94). Major
adverse cardiovascular events were similarin the testosteroneand placebo groupsin an RCT of
transdermal testosterone replacementin 790 elderly men forone year(23), as well asinanother RCT of
308 elderly menfor3years. Similarly, RCTs performed in men with obesity or metabolic syndrome also
do notshow an increased cardiovascular event rate after testosteronetherapy (4, 95, 96).

Most retrospective epidemiological studies have shown a benefit on cardiovascular events fromlong
term testosterone use in elderly men (97-99). In one of the largest studies conducted on thisissue,
Sharma et al showed 56% reduction in total mortality and 24% reduction in myocardial infarction with
use of testosteronetherapy (98). An observational study with mean follow up of 8 yearsin men with
type 2 diabetes showed that testosterone therapy was associated with areductionin acute myocardial
infarction (0% versus 31%), stroke (0% versus 25%) and mortality (7% versus 29%) when compared to
untreated controls (42). Large-scale prospective randomized controlled trials of testosterone therapy,
focusing on cardiovascular benefits and risks, are clearly needed.

Otherside effects of testosterone therapy: There isarisk for gynecomastiainthe firstfew months after
initiation of testosterone therapy. A decreasein testicular size, spermatogenesis and compromised
fertility can occur during testosterone therapy can occur because of the down regulation of
gonadotropins (1). Specificto men usingtransdermal gels for testosterone therapy, thereis a possibility
of transferring the drugto others after skin-to-skin contact. Testosterone is anabolicand it can cause
retention of sodium and water. Edema may be worsened in patients with pre-existing cardiac, renal or
hepaticdisease. Testosterone therapyshould be avoided in men with decompensated heart failure (1).
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Of note, testosterone therapyin men with compensated heart failure does not worsen ejection fraction
and seemstoimprove physical performance (measured by distance walked before onset of shortness of
breath)(58). In general, administration of testosteronein supraphysiological dosesis more likely to lead
to polycythemia, fluid retention and decreasein HDL cholesterol, and whereas physiological
replacementis usually notaccompanied with these effects (100).

In conclusion, testosterone exerts aseries of potent metabolic effects whichincludeinsulin
sensitization, the maintenance and growth of the skeletal muscle, the suppression of the adipose tissue
growth, the maintenance and growth of the skeletal mass and the maintenance of erythropoiesis and
the hematocrit. Itis not surprising, therefore, that testosterone deficiency leads to a series of clinical
effectsincludinginsulin resistance, anemia, adiposity, loss of muscle and bone loss. The replacement of
testosterone leads tothe reversal of these features.

Table 1: Metaboliceffects of testosterone in males. “+” symbolsin column 2indicate the strength of
evidence. “++” indicates that the effectis consistently observed in multiple randomized controlled trials
(RCTs) while “+” indicates that effectis observed in many, but notall RCTs.

Mrf4 (myogenicregulatory factor 4)

FFA (Free fatty acids)

Parameter Effect Mechanism of action

Lean mass Increase, ++ Muscle satellite cellactivation, decreasein myostatin
and Mrf4 (4, 54-56)

Subcutaneous fat mass Decrease, ++ Decrease in adipocyte differentiation; ? fatty acid
oxidation (4, 46, 47)

Insulin sensitivity Increase, + Increase inlean mass; decrease in fat mass, FFA and
inflammation (4)

Glycemiccontrol Improves, + Increased insulin sensitivity and glucose uptake; ?
effect on betacell function (37-40, 95)

Visceral and hepaticfat ? Trend towards decrease in shortterm studies; trials
of longerduration of treatment are needed. (4)

Bone density Increases, ++ | Increase in osteoblasticactivity, effect on fracture is
not known (3, 74)
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Hemoglobin/hematocrit Increase, ++ Increase in erythropoietin and transferrin, decrease
in hepcidin (2, 63)

Legends

Figure 1: Insulin sensitivity, expressed as glucose infusion rate during hyperinsulinemiceuglycemic
clamps, aftertreatment with intramuscular testosterone orsaline (placebo) for 24 weeksin men with
hypogonadism andtype 2diabetes. Barsrepresent means +S.D. The figure is based on data published in
Diabetes Care (4). *P=0.002 by t-testfor change at 24 weeks as compared to placebo.

Figure 2: Cellulareffects of testosteronethat contribute toincrease ininsulin signaling and glucose
uptake. Mechanisms notedinvarioustissues are depicted inacombined mannerinthe figure.
Stimulatory effects of testosterone are shown as “+” in green square and inhibitory effects are shown as
““"inred oval shape. “+” or “-” in white ovals depict effects of insulin signaling mediators otherthan
testosterone. Itis not known how the stimulatory effect of testosteronetherapy on androgen receptor
expression and proteinislinked to the mechanisms showninthe figure.
Abbreviations:inhibitor of nuclearfactor kappa-B kinase subunit beta (IKK-B), Suppressor of cytokine
signaling (SOCS)-3, Phosphatase and tensin homolog (PTEN), protein-tyrosine phosphatase 1B (PTP-IB),
Toll-likereceptor (TLR)-4, Insulin receptor (IR), insulin receptor substrate (IRS), Protein kinase B (AKT),
Glucose transportertype 4 (GLUT-4), Free fatty acids (FFA), Phosphoinositide 3-kinases (PI3K), adenosine
5’-monophosphate-activated protein kinase (AMPK), phosphatidylinositol 3,4,5trisphosphate (PIP3), 3-
phosphoinositide-dependent protein kinase-1(PDK1), Akt substrate (AS) 160, Rab (G protein member of
Ras superfamily)
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