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Abstract 

Puberty is characterized by major changes in the anatomy and function of reproductive organs. 

Androgen activity is low before puberty, but during pubertal development, the testes resume 

the production of androgens. Major physiological changes occur in the testicular cell 

compartments in response to the increase in intratesticular testosterone concentrations and 

androgen receptor expression. Androgen activity also impacts on the internal and external 

genitalia. In target cells, androgens signal through a classical and a nonclassical pathway. This 

review addresses the most recent advances in the knowledge of the role androgen signaling in 

postnatal male sexual development, with a special emphasis on human puberty. 
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Introduction 

Puberty is a unique stage during postnatal development, of variable duration according to 

species, characterized by substantial anatomical and physiological changes leading to the 

mature state, typical of adulthood, of most organs. Throughout history, most of the attention has 

been directed to the physiology and pathology of the organs in their adult stage [1]. The 

accelerated progress of technological tools during the last decades has nurtured the 

advancements in developmental biology, encompassing both prenatal and postnatal stages, 

until the achievement of the mature state. Androgen action is key for the virilization of the fetus 

but after birth, particularly in humans and other long-lived mammals, the prepubertal stage is 

characterized by a lack of evident activity in gonadal steroid secretion. During pubertal 

development, the testes resume the production of androgens, whose actions become patent in 

the development of male secondary sexual characteristics.  

The onset and progression of puberty are controlled are controlled by the hypothalamic-

pituitary-gonadal axis. The hypothalamus synthesizes gonadotropin-releasing hormone (GnRH) 

and releases it in a pulsatile manner to the portal system that drives it to the anterior pituitary 

where they reach the gonadotrophs expressing the GnRH receptor [2]. Gonadotrophs secrete 

both luteinizing hormone (LH), responsible for androgen synthesis in Leydig cells, and follicle-

stimulating hormone (FSH), acting on the seminiferous tubule [3]. The hypothalamic-pituitary-

gonadal axis is active during fetal development and for three to six months after birth in the 

human male. Thereafter, an active inhibition of GnRH secretion ensues throughout childhood, 

probably due to the effect of neurotransmitters such as catecholamines, GABA and glutamate, 

and to the most recently described makorin ring-finger protein 3 (MKRN3) [2]. A progressive 

increase in pulsatile GnRH secretion is responsible for the onset and progression of puberty. 

The mechanisms leading to the reinstatement of pulsatile GnRH secretion involve a complex 

interaction between genetic and environmental factors. Specific microRNAs (miRNAs) have 

recently been shown to lift the inhibitory actions of prepubertal blockers [4,5], thus leading to 

the activation of kisspeptin and tachykinin systems that control GnRH neuron activity [2]. 
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The testes are not only a source but also a target of androgen action, and major physiological 

changes occur in the various cell populations of the male gonads in response to variations in 

intratesticular testosterone concentrations. Testosterone is the most abundant circulating 

androgen produced by the testes. Dihydrotestosterone (DHT) is a more potent androgen [6], 

produced essentially in peripheral tissues by the classical pathway involving 5α-reduction from 

testosterone, and also by a “backdoor” pathway in the absence of testosterone as a precursor 

[7]. In target cells, androgens act essentially through two different mechanisms, one classical 

and one nonclassical, both involving the same receptor [8]. There is a differential impact of 

androgen action on the various target organs according to the stage of development. This 

review will address the most recent advances in the knowledge of the role of androgens and 

their signaling mechanisms in the different postnatal stages of male sexual development, with a 

special focus on human puberty. 

Androgen action in target cells 

Testosterone and DHT 

Testosterone and DHT are the main androgens in primates. The testis is the principle source of 

testosterone, whereas DHT is essentially produced in target tissues through the action of 5α-

reductases. There are two physiologically relevant isoenzymes with 5α-reductase activity: type 

1, encoded by SRD5A1, and type 2, encoded by SRD5A2 [9]. Expression is tissue- and age-

dependent. In humans, 5α-reductase type 1 is not expressed in the fetus but can be detected in 

nongenital skin and liver at birth. While hepatic expression persists throughout life, expression 

in nongenital skin is transient during infancy and reappears at puberty in nongenital skin, 

including scalp where it is found in the sebaceous gland. Type 2 isoform of 5α-reductase is 

expressed at high levels in the derivatives of the Wolffian duct (epididymis, vas deferens and 

seminal vesicles) and of the urogenital sinus (prostate and urethra) as well as in genital skin 

and scalp, and to a lesser extent in liver during fetal life. It can also be transiently detected in 

nongenital skin during infancy. Expression in liver, male reproductive tissues and genital skin is 
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high throughout life [10]. A type 3 isoform has more recently been identified in prostate cancer 

tissue [11] but appears not to be involved in normal reproductive physiology [12]. 

A second pathway of DHT synthesis —less abundant in the adult but physiologically important 

in the fetus [13]— bypasses testosterone, and is thus called the “backdoor pathway” [14]. First 

described in the tammar wallaby [15], this route for DHT production involves 17OH-

progesterone reduction by 5α-reductase type 1, followed by 3α-reduction by AKR1C2 or 

AKR1C4 to 17OH-allopregnanolone. The latter is subjected to 17,20 lyase activity of P450c17, 

yielding androsterone that is transformed to androstanediol by 17β-HSD3 in the gonads, or 

17β-HSD5 (AKR1C3) in the adrenals. Androstanediol is finally 3α-oxidized by 17β-HSD6 (also 

known as retinol dehydrogenase, RoDH) in target tissues to yield DHT (Figure 1). 

 

Androgen signaling 

The direct effects of androgen in target cells is mediated by the androgen receptor (AR), a 

member of the nuclear receptor subfamily 3, group C, member 4 (NR3C4). The AR is a 110-kDa 

protein, encoded by a gene mapping to Xq12, initially described as a ligand-activated 

transcription factor consisting of four main domains: an N-terminal domain (NTD), a two-zinc-

finger DNA-binding domain (DBD), a hinge region holding the nuclear localization signal (NLS), 

and a ligand-binding domain (LBD). In its unliganded form, the AR resides in the cytoplasm due 

to the association of its LBD with multiprotein complexes of chaperones and co-chaperones 

(Figure 2), like heat shock proteins HSP23, HSP40, HSP56, HSP70 and HSP90 [16], or proteins of 

the FKBP family [17]. 
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Classical pathway of androgen signaling 

Androgens passively diffuse through the cell membrane and bind to the AR LBD. At the low 

hormone levels observed in target tissues, DHT is more potent than testosterone because it has 

a fourfold higher binding affinity for the AR and a threefold slower rate of dissociation than 

testosterone. However, there are no such differences at higher testosterone concentrations as 

those observed within the testes [18]. Androgen binding to the LBD induces a conformational 

change in the AR that results in the exposure of its NLS, which promotes the translocation of the 

AR to the nucleus mediated by interactions with importins that facilitate the transit through the 

nuclear pore complex [19-21].  

In the nucleus, two AR molecules homodimerize and bind through their DBDs to androgen 

response elements (ARE) present in the promoters of target genes (Figure 2). Classical AREs are 

15-mer sequences formed by two palindromic repeats of 6 bp (5′-AGAACA-3′) separated by a 3-

non-defined-base spacer, thus resulting in 5’-AGAACAnnnTGTTCT-3’, which can be recognized 

by all class I receptors including the glucocorticoid, mineralocorticoid and progesterone 

receptors. A second type of ARE, resembling more direct repeats of 5’-AGAACA-3’-like motifs, 

are only recognized by the AR and thus called selective AREs [22,23]. Classical and selective ARE 

sequences have been described for a large number of androgen-regulated genes [22]. The AR 

dimers, acting through their NTD with a strong activation function domain (AF-1) and their LBD 

with a weaker AF-2, recruit a variety of co-activators or co-repressors that promote or inhibit 

transcriptional activity of target genes [16]. These co-regulators include modifiers of DNA 

structure such as BRG1 and SNF, histone modifiers such as CBP/p300 and NCoR, and 

coordinators of transcription such as ARC and TRAP [24]. Alternatively, the androgen-bound AR 

can interact with other transcription factors that have their own response elements in target 

gene promoters, e.g. NGFR formerly known as the p75 neurotrophin receptor [25], CGA coding 

for the glycoprotein hormones α-chain [26], LHB encoding the LHβ chain [27] and AMH coding 

for anti-Müllerian hormone [28]. In these cases, ligand-bound AR action does not require the 

existence of classical ARE sequences (Figure 2). Whichever the underlying mechanism is, these 
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“classical” or “genomic” pathways of androgen action are relatively slow mechanisms that 

require between 30 and 45 minutes after androgen stimulation for transcriptional activity to be 

modified, and even additional time is needed to be reflected in modifications of target protein 

levels. 

 

Non-classical pathways of androgen signaling 

The non-classical or “non-genomic” pathways induce responses within seconds of DHT 

stimulation that cannot be explained by the typical genomic mechanisms. Through its proline-

rich region (aa 352 to 359), the AR associates with the SH3 domain of SRC [29,30] triggering its 

tyrosine kinase activity, which results in phosphorylation of the EGF receptor (EGFR) [30]. 

Activation of MAP kinase signaling ensues, including RAF, MEK and ERK followed by p90RSK 

kinase and final phosphorylation of transcription factors (Figure 2), such as the cAMP response 

element binding (CREB) protein within 1 minute [31]. The AR has also been shown to traffic and 

localize near the cell membrane [32-34], a process mediated by MEK1/2, AKT and ERK1/2 

signaling, leading to SRC phosphorylation [35]. Recently, ZIP9, a member of a zinc transporter 

family unrelated to the classic AR, has been described as a membrane-bound AR, involved in 

Sertoli cell physiology through ERK1/2-mediated phosphorylation of transcription factors CREB 

and ATF1 [36].  

 

AR-independent pathways of androgen action 

Androgens are converted to estrogens in the gonads and many other organs by the enzyme 

aromatase, a member of the cytochrome P450 superfamily. Estrogens signal by binding to 

classical intracellular estrogen receptors ERα and ERβ or to the G- protein coupled 

membrane receptor GPER [37]. Many effects observed in association with male-range 

circulating androgen levels do not involve AR signaling, but are predominantly 
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mediated by aromatization and estrogen signaling [38-40] or the non-specific 

interaction and modulation of the activities of other nuclear receptors by androgens 

[23]. 

 

Androgens during postnatal development of the male reproductive tract 

The period elapsing between birth and the onset of puberty shows significant differences 

between mammalian species. Humans and other primate species are characterized by a long 

prepubertal stage, contrasting with rodents, in which pubertal changes start a few days after 

birth. Therefore, caution is essential when extrapolating experimental results obtained in 

rodents to primate reproductive developmental physiology. In humans, the prepubertal stage is 

usually divided into three sequential periods: the neonatal period includes the first four weeks 

of life, infancy comprises the first two years, and childhood is of variable length, until pubertal 

development begins at a  variable age between 9 and 14 years in the male (Figure 3). Similar 

stages are less clearly defined in other primates and cannot be distinguished in rodents. 

Rather than a point in postnatal development, puberty is an extended maturational stage —of 

variable duration according to species— that shows spectacular changes in most reproductive 

organs leading them to the adult mature state. Anatomical changes of the genitalia, described by 

Marshall and Tanner [41], are classified into 5 stages from the prepubertal stage 1 to full 

development at stage 5 (Figure 3). Completion of pubertal development of the genitalia takes 

approximately 3 years. In rodents, the onset of puberty is less well defined; the first changes in 

testicular physiology resembling those observed in humans, e.g. the entry of testicular germ 

cells into meiosis, occur approximately at day 7 in mice. Achievement of the adult status, as 

defined by the acquisition of fertility, occurs rapidly at 6 to 8 weeks of age. 
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Androgen effects within the testis 

Testicular changes during the prepubertal period 

The testis is structured into two compartments, the seminiferous tubules and the interstitial 

tissue. Very few changes occur from birth until the onset of puberty (Figure 3). The 

seminiferous tubules are solid with no lumen, formed by Sertoli cells and germ cells. Sertoli cells 

represent the largest testicular component until the onset of puberty. Immature Sertoli cells are 

small, oval-shaped, with elongated nuclei arranged in a palisade-like disposition. Functional 

characteristics of immature Sertoli cells include their expression of genes involved in cell 

division, growth and metabolism [42]. Archetypal features of the prepubertal Sertoli cell are its 

high expression of AMH [43], as well as its proliferative capacity, in response to FSH and other 

local factors [44]. Germ cells are represented almost exclusively by spermatogonia, which divide 

by mitosis but do not enter meiosis until puberty. The germinal epithelium is surrounded by a 

basement membrane and peritubular myoid cells. 

Between the seminiferous tubules lies the interstitial tissue, containing Leydig cells or their 

precursors and components of the connective tissue. Leydig cells are the source of androgens, 

showing substantial changes throughout development. Differences exist between rodent and 

primate Leydig cell differentiation and function, as reviewed in detail elsewhere [45-47]. 

Primate Leydig cells are highly dependent on placental hCG or pituitary LH [48]. Neonatal 

activation occurring in humans [49] persists during infancy for three to six months [50]; this 

period is often referred to as “minipuberty”, although clear physiological differences exist with 

true puberty [51]. Subsequently, a prolonged period of inactivity exists during the rest of 

infancy and childhood in humans (Figure 3). In other primates, this stage is usually called the 

“juvenile phase”. Infantile or immature Leydig cells and their precursors do not show 

spontaneous steroidogenic capacity [52], but they have the capacity to respond to exogenous 

stimulation with hCG [53]. 
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Role of androgen signaling in the prepubertal testis 

The neonatal Leydig cells produce high amounts of testosterone, in approximately the same 

range as in puberty, both in rodents [54] and humans [55,56]. The high circulating levels of 

testosterone is reflected in penile growth during the first months after birth in humans [57]. 

The intratesticular concentrations of testosterone are high enough to saturate AR binding sites 

independently of transformation to DHT [18]. The AR is expressed in peritubular myoid cells 

and Leydig cells but not in germ or Sertoli cells in neonates [54,58-61]. Therefore, androgens 

exert limited effects on the seminiferous tubules at this stage. One of the rare androgen actions 

within the testis during early postnatal life in humans involves germ cells, inducing the 

development and transformation of gonocytes into Ad spermatogonia. This process is impaired 

in boys with congenital central hypogonadism resulting in an impaired androgen surge [62] or 

with androgen insensitivity syndrome due to AR gene mutations [63]. Androgen signaling is 

probably mediated through peritubular myoid cells. Other subtle modifications observed in 

Sertoli cell biology, such as testosterone-induced membrane potential depolarization and 

increased calcium uptake, have been explained by a non-canonical pathway independent of the 

AR in neonatal rats [64]. 

Interestingly, the prevailing physiological state of androgen resistance of Sertoli cells, derived 

from their lack of AR expression during fetal and early postnatal life (Figure 3), seems critical 

for normal testicular development. Despite being exposed to adult-range intratesticular 

androgen concentrations during almost one year in humans (6 to 7 months in utero plus 3 to 6 

months after birth), Sertoli cells do not show the morphologic maturation changes observed at 

puberty [8]: they continue to produce high amounts of the immature marker AMH [60,61] and 

to proliferate in response to FSH [44]. In fact, the total number of Sertoli cells generated in this 

stage will have a direct influence on sperm output in adulthood since each Sertoli cell is capable 

of sustaining a limited number of germ cells [65]. When premature AR overexpression was 

experimentally induced in mouse Sertoli cells, their final population was significantly reduced 

and, although progression to meiosis and adult spermatogenesis was prematurely achieved, 
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absolute spermatogenic output was visibly impaired [66]. The physiological state of androgen 

insensitivity is maintained for approximately one year after birth in humans. Thereafter, Sertoli 

cells start expressing the AR (Figure 3), and exposure to intratesticular androgen elevation, e.g. 

in central precocious puberty, triggers Sertoli cell maturation and adult spermatogenic 

development in boys as young as 2 years of age. Both processes are reversible after androgen 

withdrawal [67,68]. Interestingly, spermatogenic development occurs with testicular volume 

that is smaller than that observed during normal puberty, suggestive of a precocious arrest of 

Sertoli cell proliferation, as observed in transgenic mice precociously overexpressing the AR in 

the testis [66]. 

 

Physiological changes and the role of androgen signaling in the pubertal testis 

In humans, the first clinical sign associated with the onset of puberty is the increase in testicular 

volume, passing from 2-3 ml to 4 ml when compared to Prader’s orchidometer (Figure 3), or 

from 1.8 ml to 2.7 ml when more precisely measured by ultrasonography [69,70]. As already 

mentioned, the main difference within the testis between “mini-puberty” and true puberty 

stems from Sertoli cell responsiveness to androgens [51]. At the moment of gonadotroph 

pubertal reactivation —which occurs between 9 and 14 years in humans, 2 and 4 years in other 

primates and by the end of the first postnatal week in mice— all Sertoli cells express the AR 

[54,58-61,71] but still have an immature phenotype (Figure 3). Indeed, their expression of AMH 

is typically high and they are unable to support adult spermatogenesis [54,60,72,73]. Sertoli 

cells proliferate in response to the FSH surge [44,65], which initiates before that of LH 

[56,65,74]. This provokes the initial enlargement in testicular volume in humans (Tanner stage 

G2).  

Subsequently, the progressive increase in pituitary LH pulses during pubertal stages G2 and G3 

promotes a new wave of Leydig cell differentiation [52,53,75-77] and a gradual increase in 

intratesticular testosterone concentration [78-80]. When it reaches the threshold to saturate AR 
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binding sites, with no need to transformation to the more potent androgen DHT [13], 

testosterone leads to Sertoli cell maturation, increased peritubular myoid cell activity [81] and 

final Leydig cell development [82]. Sertoli cell maturation is reflected in the upregulation of a 

large number of genes and the downregulation of others [8,42,83-87]. The secretion of the 

immaturity marker AMH wanes during puberty (Figure 3), especially between stages G2 and G3 

in humans [56] and similarly in monkeys [88], bovine [89], porcine [90] and rodents [54]. This 

is explained by a direct effect of androgens on Sertoli cells, resulting in downregulation of AMH 

expression [28]. However, the AMH gene promoter does not have a classical ARE, and 

experimental findings in the peripubertal Sertoli cell line SMAT1 [91] indicate that the ligand-

bound AR could potentially interact with the transcription factor SF1 or its response element on 

the AMH promoter to hamper SF1-dependent induction of AMH transcription (Figure 4) [28]. 

The relevance of SF1 in AMH transactivation in the fetal testis had already been shown in 

rodents [92] and humans [93]. In the absence of AR expression in Sertoli cells at the age of 

puberty, e.g. in patients with androgen insensitivity syndrome [94], Tfm mice [54] or mice with 

Sertoli cell-specific AR knockout [95], AMH expression persists at prepubertal levels or even 

higher.  

Amongst Sertoli cell-expressed genes that are upregulated by androgens during puberty, of 

particular importance are those involved in the establishment of the blood-testis barrier 

[8,42,83,85]. The blood-testis barrier creates a protected microenvironment for meiotic 

(spermatocytes) and postmeiotic germ cells (spermatids) in the adluminal compartment of the 

seminiferous tubules (Figure 3), separated from the basal compartment containing premeiotic 

germ cells (spermatogonia). The adluminal compartment is inaccessible to the immune system, 

thus avoiding autoimmune reactions to spermatocytes and spermatids, which do not exist in 

early life when the immune system develops. The mature blood-testis barrier consists of Sertoli 

cell membrane specializations, especially tight junctions and gap junctions. Claudin-11 and 

connexin-43 are the main components of tight and gap junctions, respectively. Their expression 

increases with Tanner stages in humans, as AMH wanes [96]. In mice, claudin-3 and claudin-11, 
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and components of the cytoskeleton, such as TJP1 (also known as ZO1), also show a significant 

increase by postnatal day 10, in coincidence with the first testicular signs of pubertal onset [97]. 

The androgen dependence of the blood-testis barrier components became evident in studies 

showing a decreased expression in the hypogonadal hpg mouse, with a positive response to 

DHT [98], as well as in Tfm mice [99] and AR knockout models [84,87,100]. Further support was 

provided by results of ChIP experiments showing the existence of functional ARE sequences in 

the promoters of mouse genes Cldn13 and Tjp2iso3 [101], suggesting that the classical AR-

mediated pathway is involved. Androgens can also upregulate Cldn3 and Cldn5 through the non-

genomic pathway involving ERK1/2, CREB and ATF1 [102]. In all these cases, the disruption in 

the formation of the blood-testis barrier is associated with an incomplete progression through 

meiosis. On the other hand, experimentally induced premature overexpression of the AR in 

mouse Sertoli cells drives to precocious upregulation of Cldn11 and Tjp1, and early development 

of the blood-testis barrier and of meiotic onset [103]. 

Once Sertoli cells have acquired a mature phenotype, the onset of adult spermatogenesis occurs, 

characterized by increased proliferation of germ cells and their entry into meiosis  [51]. Diploid 

spermatogonia give rise to primary spermatocytes that undergo the two successive meiotic 

divisions to produce haploid spermatids (Figure 3). The latter further mature to form 

spermatozoa that are released to reach the epididymis. The duration of the full spermatogenic 

process from spermatogonial differentiation to sperm release is approximately 74 days in 

humans [104]; however, the process is rather inefficient during the first stages of puberty, and 

spermarche only occurs about 1-2 years after pubertal onset, when boys are in Tanner stage G3 

and have a mean testicular volume of 10 ml [105,106]. Interestingly, intratesticular testosterone 

concentration is already high by this stage [78], but not serum testosterone [56], which 

underscores the importance of the paracrine action of androgens on the seminiferous tubules. 

Indeed, spermatogenic development and consequent testicular enlargement are indicative of 

local testosterone production, as also observed in boys with Leydig cell tumors [107] or 

testotoxicosis, a condition due to an activating mutation in the LH receptor [108], and in 
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patients with central hypogonadism treated with gonadotropins [109]. Conversely, high 

circulating androgen levels due to excessive adrenal production, e.g. congenital adrenal 

hyperplasia, or to exogenous testosterone administration are unable to achieve sufficient 

intratesticular androgen concentration to induce spermatogenesis. The achievement of full 

adult spermatogenesis results in a further increase in gonadal size attaining >15 ml 

(orchidometer) or >10.2 ml (ultrasonography) [70]. At this stage, the histology of the gonads is 

characterized by seminiferous tubules with open lumina. Sertoli cells have a typical columnar 

feature, and germ cells are the largely predominant population (Figure 3). 

Extensive evidence exists on the physiological importance of androgens on spermatogenic 

development at three stages: (a) spermatogonial proliferation and differentiation, (b) 

progression through meiosis, and (c) spermatid development and spermiation [110]. 

Surprisingly, the mechanisms that connect androgen-induced Sertoli cell maturation and germ 

cell progression through meiosis have not been elucidated. In mice, retinoic acid is critical for 

meiotic entry [111,112], although in humans other factors also seem to be involved [113]. The 

enzyme CYP26B1 degrades retinoic acid, thus preventing meiotic entry in the fetal and 

prepubertal testis [114]. Interestingly, CYP26B1 expression in Sertoli cells wanes at puberty 

[115], suggesting a potential downregulation by androgens like that observed for AMH [28]. 

However, experimental results in the peripubertal Sertoli cell SMAT1 line ruled out a direct 

action of androgens on CYP26B1 expression [115]. One possibility is that the androgen-driven 

changes in Sertoli cell cytoskeleton provokes changes in the germ cell cytoskeleton resulting in 

passage from the basal to the adluminal compartment of the seminiferous tubule. This immune-

privileged microenvironment would be influential for germ progression through meiosis [116].  

Impaired androgen signaling results in defective spermatogenesis. The role of ligand-bound AR 

action in the progression of spermatogenesis through meiosis after pubertal onset has been 

clearly demonstrated in conditions such as central hypogonadism, impaired Leydig cell 

steroidogenesis and androgen insensitivity, either naturally occurring in humans or 

experimentally induced in animal models [117]. Once again, Sertoli cells are the main mediators 
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since germ cells do not express the AR during puberty and adulthood [118,119]. In patients with 

androgen insensitivity syndrome, a moderately increased risk for germ cell neoplasia in situ has 

been described. Particularly in partial forms of androgen insensitivity, residual androgen 

signaling has been suggested to promote neoplastic germ cell proliferation from puberty 

onwards [120]. 

 

Androgen effects on the internal reproductive tract 

The main androgen-dependent organs of the internal male reproductive tract include the 

epididyimides, the vasa deferentia and the seminal vesicles, all derivatives of the mesonephric 

Wolffian ducts, and the prostate, which originates in the urogenital sinus. 

 

Epididymis 

In the neonatal period and early infancy, the epididymal duct is formed by a single epithelial 

layer lying on a basement membrane and surrounded by myoid cells [121]. The AR is expressed 

mainly in the epithelial cells of the epididymis [122], in which they induce maturation features 

during pubertal development [123-125]. Conversion to DHT seems to be important in spite of 

the high local androgen levels [126]. Maturational changes include cell proliferation and coiling, 

such that in the human 6 meters of tubule become packed into the small organ lying above the 

testis in the scrotum [127]. Three topographical portions can now be clearly identified: caput, 

corpus and cauda. The caput and corpus show a predominant secretory function, mainly 

involved in sperm maturation, while the cauda primarily serves as a storage site for mature 

spermatozoa. The androgen signaling pathways in postnatal development are poorly known . 

Recent studies using genome-wide protocols including DNase-seq, RNA-seq and ChIP-seq have 

characterized the transcriptome and occupancy of specific transcription factors in the different 

segments of the epididymis. Expression of the AR seems to play a major functional role 

essentially in the caput epididymis [128]. AR ChIP-seq experiments have identified new 
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cofactors, such as CCAAT/Enhancer binding protein-β (CEBPβ) and Runt-related transcription 

factor-1 (RUNX1), required for AR binding at a subset of sites in human epididymis epithelial 

cells [129]. Regional expression of AR coregulators may play a role for the differential androgen 

actions observed along the epididymis [130]. 

 

Vas deferens 

During infancy and childhood, the vas deferens is lined by a columnar epithelium with short 

stereocilia resting on a basement membrane and a basal lamina of connective tissue, 

surrounded by three layers of muscular tissue with ill-defined limits [131]. During pubertal 

development, the wall and the lumen of the vas deferens increase in diameter. The epithelium 

becomes pseudostratified, with columnar and basal cells, and the three muscular layers can be 

clearly distinguished [131]. Expression of the AR is induced by the PI3K/AKT pathway [132] in 

the epithelial cells [122], where they mediate androgen action, e.g. inducing the expression of 

Itm2b, a member of the type II integral membrane protein, during pubertal maturation [133]. 

Epidermal growth factor (EGF)-mediated signaling interferes with AR-dependent maturation in 

the epithelial cells, thus allowing cell proliferation; conversely, when androgen signaling 

prevails, DHT exerts an inhibitory effect on the EGF receptor induced ERK activity and favors 

the maintenance of mature state [134]. 

 

Seminal vesicle 

During childhood, the epithelium of the seminal vesicles consists of basal and mucus-producing 

glandular cells with relatively scarce activity. The size of the seminal vesicles grows slowly 

during childhood [135]. During pubertal development, the columnar epithelium of the seminal 

vesicles becomes highly convoluted and pseudostratified with active protein secretory 

machinery in response to DHT [136]. The AR is expressed in all cell types (stromal, smooth 
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muscle and epithelial cells), and a vital role for AR signaling via the smooth muscle cells has 

been demonstrated for normal seminal vesicle structure and function [137]. 

 

Prostate 

The prostate, the largest accessory male sex organ, is formed by glands communicating with the 

urethra through excretory ducts. The glands are surrounded by a stroma, containing connective 

tissue and smooth muscle. Three concentric zones can be distinguished surrounding the 

urethra: the innermost zone formed by mucosal glands, surrounded by the internal zone 

consisting of submucosal glands, and externally the peripheral zone containing the by tubule-

alveolar glands. The epithelial cells of the glands are formed by three distinct lineages: basal, 

luminal, and neuroendocrine cells [138]. At birth in humans, the glandular aspect is evident, 

with most acini showing a lumen. During the following weeks, the epithelial cells of the glands 

become taller, as a sign of androgen-dependent activity, and some of the acini show the typical 

features of the adult prostate. After the 6th month, there is an involution of the glandular aspect, 

and little change is seen in childhood [139]. During puberty, prostate size increases from 0.5-2 g 

to reach 12-20 g in the young adult. This is due to the development of the acini into glandular 

structures lined by a secretory, columnar epithelium and, to a lesser extent, of the stroma [140].  

Normal androgen levels [141] and expression of the AR [142] and the enzyme 5α-reductase 2 

[143] are essential for prostate development in fetal and postnatal life. AR is present in both the 

epithelial and the stromal cells, and the androgenic effects on prostate development is mediated 

through mesenchymal–epithelial interactions. Selective cell disruption of the AR has clearly 

shown that fetal and postnatal prostate development and epithelial proliferation depend mainly 

on androgen-dependent paracrine signals originating in stromal cells [144], whereas AR 

signaling in epithelial cells maintains their functionally differentiated phenotype and restrains 

their proliferation specially in the anterior lobe [145,146]. Androgen signaling through the 

classical AR pathway has a critical role in mediating WNT action on mouse prostate 

D
ow

nloaded from
 https://academ

ic.oup.com
/endo/advance-article/doi/10.1210/endocr/bqaa215/5992296 by U

niversity of N
ew

 England user on 21 N
ovem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

 

 

development [147]. The subcellular androgen-dependent mechanisms involved in pubertal 

development of the prostate have been poorly studied. The AR co-chaperone FKBP52 has a 

specific role in prostate androgen-regulated maturation [17]. The prostate-specific antigen PSA 

(also known as kallikrein-related peptidase 3, encoded by KLK3) is a functional marker of 

androgen action produced by prostate gland epithelial cells. PSA concentration is extremely low 

or undetectable in prepubertal boys  and during Tanner stage G2, reflecting the low circulating 

levels of testosterone; PSA levels increase progressively from stages G3 to G5 of normal 

pubertal development, in correlation with serum testosterone [148], are elevated in boys with 

precocious puberty and decrease when androgen production is curtailed by GnRH analog 

treatment [149], and are low in patients with delayed puberty or other conditions characterized 

by androgen deficiency [150]. PSA levels reflect the direct transcriptional activation exerted by 

DHT-bound AR on classical ARE sequences present in the KLK3 gene promoter [151]. 

 

The external genitalia 

Changes during childhood and pubertal development 

The penis consists of a root, the body or shaft and the glans. The body is enveloped in skin and 

contains the erectile tissues: the two corpora cavernosa and the corpus spongiosum. Penile size 

shows little variations amongst human ethnic groups, with a mean length between 3 and 4 cm at 

birth [152]. Penile length shows a very modest increase during infancy and childhood (Figure 

3), approximately 1 mm per month during the first 6 months after birth [57] and 2-3 mm per 

year during childhood [153]. 

The scrotum is the cutaneous sac that holds the testes outside of the abdominal cavity. Covered 

by skin, is the dartos fascia essentially formed by smooth muscle, the dartos muscle. The skin of 

the scrotum and the pubic area is hair-bearing, with sebaceous and sweat glands. The hair is 

scarce, fine and lacks the medulla layer, i.e. it is vellus hair, until the onset of puberty. 
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Genital (G) and pubic hair (PH) development during human puberty has been characterized in 

detail by Marshall and Tanner [41]. Together with testicular size increase in stage G2, the 

scrotum enlarges and its skin texture changes and reddens (Figure 3). Subsequently in stage G3, 

the penis grows first in length and then in breadth, together with a further enlargement of the 

testes and scrotum. Before the genitalia progress to stage G4, sparse growth of long, slightly 

pigmented pubic hair can be seen at the base of the penis; this stage of pubic hair development 

is known as PH2. Subsequently, the penis further enlarges in length and breadth, and the glans 

develops, the testes and scrotum also enlarge, with darkening of the scrotal skin (stage G4) and 

pubic hair becomes curled, darker and  coarser, spreading sparsely (PH3). This coincides with 

peak height velocity in adolescents. In the following months, the external genitalia and pubic 

hair reach the adult stages (G5 and PH5). This usual sequence of events may be altered in 

certain conditions, such as early adrenarche or other situations of excess androgen production 

by the adrenals, where pubic hair may appear before stage G2. 

Role of androgen signaling in the pubertal changes of external genitalia 

The normal development and trophism of the external genitalia are fully dependent on 

continuous androgen stimulation from fetal life until the completion of puberty. The AR is 

expressed in stromal and endothelial cells of the erectile tissue of the corpus cavernosum, 

corpus spongiosum and glans penis [154,155] and in the fibroblasts and hair follicles of the 

genital skin [156-158]. Circulating testosterone levels reaching these organs are insufficient to 

produce an appropriate effect, thus 5α-reductase activity for transformation into DHT is critical 

[159]. SRD5A2 expression is high in genital skin. A deficiency in DHT synthesis or action in early 

fetal life results in genital ambiguity, whereas a later production deficiency leads to micropenis 

and hypotrophic scrotum. Interestingly, when the problem relies on 5α-reductase activity, the 

development and function of organs exposed to high testosterone levels is not affected, e.g. in 

patients with mutations in SRD5A2 Wolffian duct derivatives adjacent to the testis (epididymis 

and vas deferens) differentiate in utero and Sertoli cells mature and support spermatogenesis at 
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puberty [159]. The expression of the AR and 5α-reductase 2 does not seem to show major 

changes from fetal life to puberty, whereas that of 5α-reductase 1 increases after birth [10,159]. 

Changes in penile size and scrotal and pubic hair trophism follow the increase of circulating 

testosterone levels during human pubertal development: changes are very subtle or absent in 

Tanner stage 2 [41] when serum androgens concentrations are roughly similar to those 

observed before pubertal onset [56]; from stage G3 onwards, there is a progressive increase in 

serum testosterone associated with enlargement of the penis and scrotum and development of 

genital skin hair (Figure 3). Surprisingly few studies exist on the molecular signaling pathways 

underlying androgen action in the external genitalia. In the rat,  penile growth is in part 

explained by testosterone regulation of keratin 33B expression through AR binding to an ARE 

sequence present in the Krt33b promoter [160].  

Conclusions 

Androgens play a major role during male pubertal development. The testis is the major source 

of testosterone, which acts in a paracrine way mainly through Sertoli and peritubular myoid 

cells to induce and maintain adult spermatogenesis. Rapid responses are mediated by non-

genomic pathways whereas the best characterized long-term actions involving upregulation 

and downregulation of androgen-dependent genes are mediated by genomic pathways. In the 

internal and external genitalia, testosterone needs to be the more potent androgen DHT to be 

efficacious. While the effects of androgens and of their withdrawal have been extensively 

characterized at the level of the internal and external genitalia, remarkably little information 

exits on the molecular mechanisms involved. 

 

Data availability 

Data sharing is not applicable to this article as no datasets were generated or analyzed during 

the current study.  
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Figure legends 

 

Figure 1. Sex steroid synthesis in the male: the classical pathway is shown in green, and the 

“backdoor” pathway of DHT synthesis is shown in blue. 

 

Figure 2. Pathways of androgen signaling. Androgens, such as testosterone (T) or 

dihydrotestosterone (DHT) represented as blue circles, cross the cell membrane and bind to the 

androgen receptor (AR) in target cells, displacing chaperones as the heat shock proteins (HSP), 

In the “classical” or “genomic” pathway, the ligand-bound AR translocates to the nucleus and 

forms homodimers that interact with androgen response elements (ARE) in target gene 

promoters or with other transcription factors (TF), finally regulating gene expression. In the 

“non-classical” or “non-genomic” pathway, the ligand-bound AR migrates to the inner side of the 

cell membrane and interact with the Steroid receptor coactivator (Src) and activates the 

epidermal growth factor receptor (EGFR) signaling cascade involving e.g. the mitogen-activated 

protein kinase (MEK), the extracellular signal-regulated kinase (ERK), and the cAMP response 

element binding protein (CREB). Modifed from: Edelsztein NY, Rey RA. Importance of the 

androgen receptor signaling in gene transactivation and transrepression for pubertal 

maturation of the testis. Cells. 2019;8:1-17, with permission from the authors © 2019, licensee 

MDPI, Basel, Switzerland (open access article distributed under the terms and conditions of the 

Creative Commons Attribution (CC BY) license). 

 

Figure 3. Schematics of changes in serum hormone levels, anatomy of the external genitalia, 

histology of the testis, illustrative components of the blood-testis barrier (BTB, reproduced with 

permission from ref. [8]), and testicular volume (in ml, as compared to Prader’s orchidometer) 

throughout postnatal life in humans. AMH: anti-Müllerian hormone, T: testosterone, AR: 

androgen receptor, G1-G5: genital stages according to Marshall and Tanner [41], SC: Sertoli 
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cells, Sg: Spermtaogonia, Sc: Spermatocytes, Sd: Spermatids. Prader’s orchidometer: numbers 

represent testicular volume in ml. 

 

Figure 4. Molecular mechanism explaining the androgen-induced downregulation of anti-

Müllerian hormone (AMH) expression in pubertal Sertoli cells. (A) Before puberty, in the 

absence of androgen action, AMH is highly expressed in response to transcription factors SF1, 

GATA4 and WT1. (B) During puberty and adulthood, the ligand-bound androgen receptor (AR) 

inhibits AMH transcription through either a direct interaction with SF1 sites on the AMH 

promoter (blockage by competition, which impedes SF1 binding to its specific response 

elements) or a protein-protein interaction with SF1 (blockage by interaction, resulting in the 

inactivation of SF1 transcriptional activity). In both cases, the AR prevents SF1 from 

upregulating AMH expression. Reproduced from: Edelsztein NY, Rey RA. Importance of the 

androgen receptor signaling in gene transactivation and transrepression for pubertal 

maturation of the testis. Cells. 2019;8:1-17, with permission from the authors © 2019, licensee 

MDPI, Basel, Switzerland (open access article distributed under the terms and conditions of the 

Creative Commons Attribution (CC BY) license). 
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Figure  1  
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Figure  2 
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Figure  3 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/endo/advance-article/doi/10.1210/endocr/bqaa215/5992296 by U

niversity of N
ew

 England user on 21 N
ovem

ber 2020



Acc
ep

ted
 M

an
us

cri
pt

 

Figure  4 
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