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Abstract 

Context:  Male infertility is defined as the inability to conceive following 1 year of regular 
unprotected intercourse. It is the causative factor in 50% of couples and a leading 
indication for assisted reproductive techniques (ART). Testicular failure is the most 
common cause of male infertility, yet the least studied to date.
Evidence Acquisition: The review is an evidence-based summary of male infertility 
due to testicular failure with a focus on etiology, clinical assessment, and current 
management approaches. PubMed-searched articles and relevant clinical guidelines 
were reviewed in detail.
Evidence Synthesis/Results:  Spermatogenesis is under multiple levels of regulation and 
novel molecular diagnostic tests of sperm function (reactive oxidative species and DNA 
fragmentation) have since been developed, and albeit currently remain as research tools. 
Several genetic, environmental, and lifestyle factors provoking testicular failure have 
been elucidated during the last decade; nevertheless, 40% of cases are idiopathic, with 
novel monogenic genes linked in the etiopathogenesis. Microsurgical testicular sperm 
extraction (micro-TESE) and hormonal stimulation with gonadotropins, selective estrogen 
receptor modulators, and aromatase inhibitors are recently developed therapeutic 
approaches for men with the most severe form of testicular failure, nonobstructive 
azoospermia. However, high-quality clinical trials data is currently lacking.
Conclusions:  Male infertility due to testicular failure has traditionally been viewed as 
unmodifiable. In the absence of effective pharmacological therapies, delivery of lifestyle 
advice is a potentially important treatment option. Future research efforts are needed to 
determine unidentified factors causative in “idiopathic” male infertility and long-term 
follow-up studies of babies conceived through ART.

Freeform/Key Words: testes, male infertility, testosterone, semen, spermatogenesis, sperm quality

Infertility is defined as being unable to conceive after 
12 months of regular (at least twice weekly) unprotected 
intercourse (1, 2). Male infertility is due to abnormal 
sperm parameters in the male partner and contributes to 

50% of all cases of infertility (3, 4). A recent systematic re-
view reported a fall in total sperm counts by 59.3% since 
the 1970s, in North America, Europe, and Australasia 
(5); however, other studies have failed to observe such a 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article/doi/10.1210/clinem
/dgaa781/6028614 by Karolinska Institutet Library user on 12 D

ecem
ber 2020

http://orcid.org/0000-0002-3198-0879
http://orcid.org/0000-0001-5950-4316
http://orcid.org/0000-0002-2578-8223
http://orcid.org/0000-0002-3198-0879
http://orcid.org/0000-0001-5950-4316
http://orcid.org/0000-0002-2578-8223


The Journal of Clinical Endocrinology & Metabolism, 2020, Vol. XX, No. XX� 2

change (6, 7). Furthermore, male infertility is increasingly 
observed as a “canary in the coal mine” for future male 
health conditions (8), with an association with cardiovas-
cular disease, testicular cancer, quality of life, and increased 
all-cause mortality (9). Male infertility may be broadly sub-
divided into 3 categories: (1) hypothalamo-pituitary dis-
ease causing secondary hypogonadism; (2) obstruction of 
seminal outflow (usually termed, obstructive azoospermia, 
OA); and testicular dysfunction (which may be associated 
with primary hypogonadism) (10–12).
Azoospermia is defined as the absence of sperm in ejacu-
late. It affects approximately 1% of all men and is the most 
severe manifestation of testicular failure (13). Secondary 
hypogonadism has been extensively summarized in the 
literature and has established therapies, gonadotropin-
releasing hormone (GnRH), and gonadotropin replacement 
(14, 15). By contrast, OA and testicular dysfunction are less 
well-studied but represent rapidly evolving conditions with 
emerging endocrine and surgical therapies for affected pa-
tients. Our review, therefore, focuses on primary testicular 
dysfunction as a cause of male infertility.

Physiology of spermatogenesis

During spermatogenesis, male germ cells (spermatogonia) 
develop into mature spermatozoa through 3 distinct phases: 
spermatogonia divide by mitosis into primary spermatocytes, 
which in turn undergo meiosis (I and II) to form spermatids 
(16). Spermatids then develop by cytodifferentiation into 
elongated spermatozoa during spermiogenesis. The time 
taken for spermatogenesis is species-specific (17). Studies sug-
gest that the entire spermatogenic process is between 42 and 

76 days in men (18), which is an important consideration 
when assessing the therapeutic impact of any lifestyle/medical 
changes in subsequent semen analysis. In humans, spermato-
genesis occurs in the recesses of the Sertoli cells located along 
the entire length of the seminiferous tubules of the testes in 
a helical arrangement, with several stages represented in a 
single cross-section (19). Sertoli cells provide structural and 
functional support to germ cells, and Leydig cells synthesize 
testosterone. These testicular functions are dependent on the 
hypothalamic-pituitary-testicular (HPT) axis (20). Pulsatile 
secretion of GnRH stimulates follicle-stimulating hormone 
(FSH) and luteinizing hormone (LH) secretion from the 
anterior pituitary. FSH stimulates Sertoli cell function and 
spermatogenesis (21). Sertoli and Leydig cells secrete inhibin 
B and testosterone, respectively. Testosterone and inhibin B 
have negative feedback effects at pituitary and hypothalamic 
levels. Optimal spermatogenesis requires the action of both 
testosterone and FSH. Derangements at any of these steps 
can lead to testicular dysfunction and male infertility (22). 
Multiple other hormones and their receptors (23) are ob-
served in testes and spermatozoa of animals and humans such 
as AMH anti-Mullerian hormone (AMH) (24 ,25), insulin-
like factor 3 (INSL-3) (26, 27), leptin (28–30), insulin (31), 
and kisspeptin (32), with postulated paracrine and endocrine 
roles in regulating testicular functions.

Sperm quality

Conventional semen analysis is the hallmark diagnostic 
test for male infertility (Table 1). It reflects the production 
of spermatozoa in the testes, the patency of the duct system 

Table 1.  WHO reference range for semen analysis with examples of main abnormalities related to semen analysis

Semen Parameter Reference Range Abnormality Description

Semen volume ≥1.5 ml   
pH ≥7.2   
Sperm concentration ≥15 million sperm/ml Azoospermia Absence of sperm in seminal plasma

Oligozoospermia <15 million spermatozoa/ml
Cryptozoospermia <1 million spermatozoa/ml

Total sperm count ≥39 million sperm/ 
ejaculate

  

Total sperm motility ≥40% motile sperm Asthenozoospermia <40% total motile spermatozoa or <32% progressive 
motile spermatozoa

Progressive sperm 
motility

≥32% progressively  
motile sperm 

Asthenozoospermia <40% total motile spermatozoa or <32% progressive 
motile spermatozoa

Sperm morphology ≥4% morphologically 
normal sperm

Teratozoospermia <4% normal form/morphology

  Oligoasthenoteratozoospermia  
(OAT syndrome)

Combination of <15 million spermatozoa/ml, <32% 
progressive motile spermatozoa, and <4% normal 
form

Based on WHO reference range for semen analysis (Cooper et al 2010 (34)).
Abbreviations: pH, potential of hydrogen; WHO, World Health Organization.
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and the glandular secretory activity (33). Lower reference 
ranges for semen parameters were generated based on data 
from fertile men whose partners had time to pregnancy of 
within 1 year (34). Reference ranges for semen parameters 
were also defined for unselected men (with unknown fer-
tility status); these may provide a more appropriate reference 
population for screening the male population without regard 
to prior fertility (35). Men with sperm parameters below the 
World Health Organization (WHO) normal values are con-
sidered to have male factor infertility (36) and semen quality 
is used as a surrogate measure of male fecundity (35). The 
total number of spermatozoa per ejaculate and the sperm 
concentration are associated with fertility outcomes such as 
conception (37), time to pregnancy (38), and pregnancy rates 
(39). However, semen analysis is descriptive and not a direct 
marker of sperm function, and its predictive value for nat-
ural conception and fertility rates are low in most settings. In 
addition, WHO thresholds (34) are based on the 5th centile, 
so natural conception is entirely possible below this refer-
ence value. Furthermore, these threshold values are generated 
from data within a discrete reference group. which might not 
apply to the individual patient. The most significant sperm 
defects associated with infertility are summarized in Table 1.

Oxidative stress and sperm DNA fragmentation

Semen analysis parameters are subject to marked biological 
variation, with standard deviations comparable to mean 
levels (34). Considerable focus has therefore been placed on 
developing novel molecular diagnostic tests of sperm func-
tion. Semen reactive oxidative species (ROS) (40, 41) and 
sperm DNA fragmentation index (42) are novel tests of 
sperm function. Seminal ROS are released physiologically 
by leucocytes and as by-products of intracellular metabolic 
pathways and during adenosine triphosphate (ATP) produc-
tion from the sperm mitochondria. Small amounts of semen 
ROS are essential for optimum sperm function and fertiliza-
tion. However, there are a number of exogenous factors such 
as genitourinary infections, varicocele and obesity that may 
elevate semen ROS (43, 44). Methods used to measure ROS 
include chemiluminescence assay and electrochemical assay 
to measure oxidation reduction potential (sORP) (45). High 
ROS may lead to male infertility by adversely affecting sperm 
membrane lipid peroxidation, sperm motility, the acrosome 
reaction, chromatin maturation, and subsequent sperm DNA 
fragmentation (46, 47). Sperm DNA fragmentation is the per-
centage of spermatozoa with fragmented or damaged DNA. 
Assays for DNA fragmentation include sperm chromatin 
structure assay (SCSA), sperm chromatin dispersion (SCD), 
terminal deoxynucleotidyl transferase-mediated deoxyuridine 
triphosphate nick end-labeling and Comet assay (48). There 
is large variability in these assays, with a lack of consensus or 

external quality control for any method. Furthermore, there 
is insufficient evidence to support the routine use of ROS 
and sperm DNA fragmentation in male factor infertility, and 
these are not recommended by current clinical guidelines. It is 
suggested that use of antioxidants and lifestyle changes may 
reduce the risk of high ROS and sperm DNA fragmentation 
to improve male infertility; however, there is paucity in the 
data with a lack of good quality randomized controlled trials 
available (49, 50). Studies have reported worse outcomes of 
ART (51–53), with elevated levels of DNA fragmentation, 
including recurrent pregnancy loss (54).

Etiology of Male Infertility Due to Testicular 
Dysfunction

Causes of male infertility due to testicular dysfunction are 
summarised in Table 2.

Genetic

Chromosomal abnormalities affect both sex and autosomal 
chromosomes and can cause numerical or structural aber-
rations (55) (Table 3).

Table 2.  Causes and risk factors of testicular failure and 

genital tract abnormalities

Congenital

Klinefelter’s syndrome and variants
Male XX syndrome
Robertsonian translocation/inversions
Y chromosome microdeletions: partial and complete
Cystic Fibrosis
Novel monogenic mutations, eg, TEX11
Immotile cilia/Kartagener’s syndrome
Congenital cryptorchidism 
Acquired
Infections, eg, mumps orchitis, echovirus, gonorrhea, chlamydia
Infiltrative disease, eg, TB
Testicular torsion or trauma or malignancy
Chemotherapy, pelvic irradiation, or surgery
Large varicoceles
Medications
Idiopathic 
Environmental factors/systemic disease
Obesity
Endocrine-disrupting chemicals
Lifestyle factors, eg, alcohol, smoking, recreational drug use
Genital tract abnormalities (defect in sperm transport)
Obstruction: congenital absence of vas deferens, infections,  

vasectomy
Others: ejaculatory dysfunction 

Abbreviation: TB, tuberculosis; TEX11, testis-expressed gene 11.
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Klinefelter’s syndrome. Klinefelter’s syndrome (KS) is the 
most common genetic aneuploidy of testicular failure in 
oligozoospermic and azoospermic men (10–15%) (56, 
57). It affects 1/1000 to 1/500 males (58). There are 2 
main forms: nonmosaic 47XXY (80–90%) or mosaic 
47XXY/46XY (5–10%). The classical phenotype is that of 
a tall male with small, firm testes and gynaecomastia (59), 
however the phenotype may vary from a fully virilized 
male to one with androgen deficiency. Consequently, 70% 
of men with KS remain undiagnosed until late adulthood 
(60). The endocrine profile reveals hypergonadotropic 
hypogonadism (low–normal testosterone, high FSH 
and LH levels, and undetectable inhibin B consistent 
with testicular failure). Semen analysis normally 
reveals azoospermia and may be the only phenotypical 
abnormality in men with KS. Testicular histology may 
include extensive fibrosis and hyalinization of seminiferous 
tubules with loss of spermatogonial stem cells (61), 
Sertoli cell degeneration, and hyperplasia of Leydig cells 
(62). However, some men may have single-residual foci 
of spermatogenesis within their testis (56). These foci of 
spermatogenesis in KS appear to arise from 46XY stem 
cells, and thus the vast majority of offspring have a normal 
karyotype. Therefore, testicular sperm retrieval techniques 
(TESE, see section on ‘Surgical sperm retrieval techniques’) 
offer therapeutic options for biological paternity. In a 
recent meta-analysis, a quarter of adult men with KS 
negative for mature spermatozoa on testicular biopsy were 
positive for spermatogonia, thus indicating they had sperm 
maturation arrest (63). Therefore, future research and 
advances in spermatogonial stem cell in vitro propagation, 
transplantation, and differentiation may offer new options 
for fertility preservation. These are still experimental 
methods, particularly cryopreservation of spermatogonial 

stem cells in the context of peripubertal or prepubertal boys 
with KS (64). Furthermore, patients with KS are found to 
have increased risks of cardiovascular disease, metabolic 
syndrome, diabetes mellitus, autoimmune diseases, and 
venous thromboembolism (65). This highlights the need for 
regular medical follow-up, especially for men on treatment 
with testosterone, which is the mainstay of treatment in 
hypogonadal nonfertility-seeking KS patients.

Robertsonian translocations and inversions. These involve 
chromosomal rearrangement and the “crossing over” 
of chromosomes (66). Individuals with Robertsonian 
translocation have 45 chromosomes. These are the most 
common structural autosomal abnormalities in infertile 
men, affecting 1/1000 men, with a higher prevalence 
in oligozoospermic men (1.6%) (64). These can be 
further classified as balanced or unbalanced structural 
aberrations (67). Balanced aberrations are characterized 
by a deviation from normal chromosome structure but 
without a net loss or gain of genetic material. These 
mainly result in spermatogenic failure (oligozoospermic 
or azoospermia) and male infertility, as well as in a risk 
of genetic imbalances among the offspring (68). The 
breakpoints of chromosomal rearrangements are critical in 
determining the resulting phenotype and implications for 
offspring; clinical genetics expertise is therefore required 
to interpret results. In contrast, unbalanced structural 
chromosomal abnormalities lead to a net gain or net loss 
of genetic material, and they are generally incompatible 
with life and cause a spectrum of disease (the exception 
to this rule being Y chromosome microdeletions,  see 
section on ‘Y-chromosome microdeletions’). These 
structural aberrations can be either de novo or inherited. 
As with other genetic causes of male infertility, men with 
structural chromosomal abnormalities should be offered 
preconception genetic counselling and the option for 
preimplantation genetic diagnosis, prior to using their 
ejaculated or testicular sperm during ART (69).

Y-chromosome microdeletions. Y-chromosome microdeletions 
are genomic deletions of specific sections of the Y 
chromosome, containing genes needed for spermatogenesis 
(70). These observed in men with severe oligozoospermia 
(< 5 million/ml) (3–7%) and azoospermia (8–12%) (71). 
These microdeletions are termed “azoospermia factor,” 
namely AZFa, AFZb, AZFc, according to the genomic 
region deleted. AZFc deletions (65–70%) are the most 
common form of the long arm of the Y-chromosome 
microdeletions, with low levels of sperm in ejaculate or 
testicular biopsies (sperm retrieval rates of 50–75%) (72). 
In contrast, complete deletions of the AZFa and AZFb 
region result in complete spermatogenic failure, with severe 

Table 3.  Common congenital causes of testicular failure 

and obstructive azoospermia with genotype–phenotype 

correlations

Genetic Aberration Phenotype

Klinefelter syndrome Azoospermia to severe 
oligozoospermiaRobertsonian translocation

Y chromosome microdeletions
AZFa deletion Azoospermia 
AZFb deletion Azoospermia
AZFc deletion Azoospermia to 

normozoospermia 
46 XX male syndrome Azoospermia
CFTR Obstructive azoospermia
INSL3-LGR8 Cryptorchidism

Abbreviations: AZF, azoospermia factor; CFTR, cystic fibrosis transmembrane 
conductance regulator; INSL3-LGR8, insulin-like factor 3–leucine-rich repeat-
containing G protein-coupled receptor 8.
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testicular histology phenotypes including Sertoli cell only 
(SCO) or complete spermatogenic arrest such that no 
sperm is found at the time of TESE (73).

46 XX male syndrome. This is a disorder of sex 
development affecting approximately 1/9000 to 1/20 000 
men (74). The most common suggested genetic mechanism 
leading to 46XX testicular disorder of sex development 
is translocation of part of the Y chromosome, including 
the SRY (Sex Determining Region Y) gene to the X 
chromosome during paternal meiosis. Males with 46XX 
SRY positive have completely differentiated male external 
and internal genitalia, with the majority remaining 
undiagnosed until adulthood when they present with 
infertility. Affected patients lack all of the AZF genes 
needed for spermatogenesis, so they cannot produce sperm 
(azoospermia) (75, 76).

Monogenic causes of male infertility. The cystic fibrosis 
transmembrane conductance regulator (CFTR) is 
required for formation of the ejaculatory duct, seminal 
vesicles, vas deferens, and distal two-thirds of the 
epididymis. Heterozygous loss of function CFTR variants 
are seen in approximately 2% to 3% of Caucasian men 
with obstructive azoospermia but are rare in Asians 
and other ethnicities. It is clinically characterized by 
congenital bilateral absence of vasa deferens (CBAVD), 
full epididymis, and low volume acidic ejaculate (77). 
Although patients with cystic fibrosis (CF) have mutations 
in both copies of the CFTR gene, majority of patients 
with CBAVD are carriers of mutations in only 1 copy of 
the gene. With more than 1500 known CFTR mutations 
(78), CBAVD is a heterogeneous genetic condition, with 
many cases associated with mild forms of CF and others 
having no relationship with CF (79). Female partners 
of men with CBAVD are recommended to also have 
CFTR carrier genetic testing to stratify the risk of having 
offspring with clinical CF. Several groups worldwide are 
searching for genes causing NOA. Testis-expressed gene 
11 (TEX11) is an X-linked gene encoding a protein 
crucial for male germ cell meiotic DNA recombination 
and chromosomal synapsis. Inactivating mutations cause 
NOA and meiotic arrest in mice (80) and humans (81). 
Two other novel genes associated with NOA include 
NR5A1 and DMRT1 (82). Other rarer inherited causes 
of defective spermatozoa transport include primary ciliary 
dyskinesia (with or without Kartagener’s syndrome, which 
is inherited in an autosomal recessive pattern). Infertility 
is from spermatozoa immobility due to defective sperm-
flagella movement (83). There is a higher prevalence of 
this condition in communities with consanguinity.

Developmental

Undescended testis (UDT) or cryptorchidism is associated 
with impaired spermatogenesis and testicular germ cell 
tumors (84). Treatment with orchidopexy is therefore re-
commended between 6 and 18 months of age to conserve 
spermatogenesis (85) and hormone production, and de-
crease the risk of testicular tumors (86). However, UDT 
are often damaged and treatment with orchidopexy risks 
causing obstructive azoospermia but more commonly 
testicular atrophy (87). Genetic analysis is not required, 
however, unless the patient is azoospermic or severely 
oligozoospermic, although novel mutations in insulin-like 
factor 3 (INSL3) and leucine-rich repeat-containing G 
protein-coupled receptor 8 (LGR8) genes are observed to 
be associated with cryptorchidism (88) (Table 3).

Acquired

Genitourinary infections. Infections of the male genitourinary 
tract from bacteria, viruses, or protozoa are associated with 
10% to 15% of cases of male infertility (89). These are 
potentially curable causes of male infertility and present as 
urethritis, prostatitis, orchitis, or epididymitis (90). These 
infections are more common in developing countries and 
can be both acute or chronic, with Chlamydia trachomatis 
and Neisseria gonorrhea as the 2 most common associated 
pathogens. Chlamydia infection may cause urethritis, 
epididymitis(-orchitis), and prostatitis. Inflammation of 
the epididymis from the infection can induce infertility 
through sperm tract obstruction (91). Sperm damage may 
also occur from elevated ROS levels in the semen resulting 
from neutrophil activation. Furthermore, a recent study 
reported the detection of chlamydia-specific DNA and 
protein in testicular biopsies of infertile men, which may 
represent a further component of chlamydia-related male 
infertility (92). Other pathogens such as Mycoplasma 
gentitalium, tuberculosis (TB), Ureaplasma urealitycum, 
and mumps are also associated with male infertility (93). 
Tuberculosis epididymitis is typically chronic and occurs 
in high-risk groups such as men with immunodeficiency 
and high prevalence countries. There is increased incidence 
and risk of infertility among men with Hepatitis B and 
Hepatitis C infections compared with men without, but it 
is not known whether hepatitis infections directly impair 
male reproductive function. Many pathogens of the male 
genitourinary tract are asymptomatic, and it is often 
difficult to distinguish colonization from infection, which is 
detrimental to fertility (94). The underlying mechanisms are, 
however, unclear and hypothesized to include damage to 
the germinal epithelium, ischemia, or immune dysfunction, 
with cell damage from increased ROS (95). Spermatozoa 
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may be affected at different levels of their development, 
maturation, and transport.

Infections are also associated with obstruction along the 
seminal tract, such as urethral strictures. Bacteriospermia is 
suspected if there are >1 million peroxidase-positive white 
blood cells per ml of ejaculate (leukocytospermia), with a 
semen culture or PCR to confirm the pathogen. Antibiotic 
treatment may improve sperm quality and prevent tes-
ticular damage and complications, but its effects on natural 
conception are not yet elucidated (96, 97). Furthermore, 
leucocytospermia is a sign of inflammation and may not be 
associated with a bacterial or viral process, hence its clin-
ical significance in the ejaculate is controversial (98, 99). In 
addition, normal colonization of genitourinary tract with 
pathogens such as mycoplasma also hinders the assessment 
of the pathogenic effect. Furthermore, many of these patho-
gens may co-exist and potentiate the detrimental effect. 
Recently, viruses such as human papilloma virus (HPV) has 
been found in semen of men with male infertility (100); 
however, further good quality studies are needed to define 
its true clinical impact and association with sperm quality 
(101).

Cancer and its treatment. The 3 most common cancers 
associated with male infertility during reproductive 
years include: leukaemia, Hodgkin’s lymphoma, and 
testicular germ cell tumors. Nearly 5% to 8% of men with 
testicular germ cell tumors have azoospermia prior to any 
cancer treatment (102). The underlying mechanisms for 
direct testicular dysfunction include germinal epithelial 
hypoplasia, spermatogonial apoptosis, increased ROS, 
and sperm DNA damage (103, 104). Sperm damage 
is dependent on multiple variables, including tumor 
type, burden of disease, drug dose/combination therapy, 
and individual sensitivity—hence, the recovery time is 
unpredictable. Sperm cryopreservation is the only effective 
prevention for male infertility from testicular damage due 
to gonadotoxic treatment (105). There are clear guidelines 
to suggest that all patients should be provided with 
information on the impact of their cancer treatment on 
spermatogenesis (2, 106). Fertility-preserving procedures 
such as sperm cryopreservation and TESE should be 
offered from midpuberty onwards prior to gonadotoxic 
chemoradiotherapy or pelvic surgery.

Varicocele.  This is defined as the abnormal dilatation 
of the pampiniform plexus of veins within the scrotum 
(107). Its incidence in infertile men ranges from 35% to 
40%, although may occur in up to 15% of the normal 
male population. Most clinically detectable varicoceles 
are solely left sided; clinical varicoceles are only bilateral 
when severe (108). Large varicoceles (palpable and 

visible on standing) may impair spermatogenesis by 
mechanisms including compromised testicular cooling, 
hypoxia, increased intratesticular ROS, and sperm DNA 
damage (109). Varicocele repair is a debated therapy 
for male infertility; 2 recent meta-analyses support 
the surgical varicocelectomy for men with clinically 
significant varicoceles (110, 111). Varicocele repair is not 
recommended in subclinical varicoceles or in men with 
normal semen parameters (112). A subclinical varicocele 
is not palpable or visible during either rest or Valsalva 
maneuver, but can be shown by radiographic tests, eg, 
Doppler ultrasound studies.

Medications. Numerous medications have been reported to 
be associated with testicular failure (Table 4). The adverse 
effects can range from direct testicular spermatogenic 
impairment and antiandrogenic effects to ejaculatory/sexual 
dysfunction. Alkylating agents such as cyclophosphamide 
and immunosuppressants, particularly sirolimus, are 
toxic to germ cells (113); sperm cryopreservation is 
normally recommended beforehand, and contraception is 
advised during treatment due to potential teratogenicity. 
Observational studies have suggested that Selective 
serotonin reuptake inhibitors are associated with impaired 
semen quality (114) and damaged sperm DNA integrity in 
men (115). Radioiodine therapy for thyroid disease may 
cause testicular damage and abnormal spermatogenesis 
(116); however, these adverse effects are usually dose- and 
time-dependent, with improvements in sperm parameters 
after cessation of therapy. The risk is, however, increased 
with repeated higher cumulative doses. Alpha adrenergic 

Table 4.  Medications associated with testicular failure

Impairment of Spermatogenesis

Chemotherapeutic agents
Calcium channel blockers
Colchicine
Sulphasalazine
Nitrofurantoin
Corticosteroids
Opioidsa

Radioiodine
Testosterone replacementa

Androgensa

Antiandrogenic
Cimetidine
Spironolactone
Flutamide
Ejaculatory failure
Alpha blockers
Serotonin reuptake inhibitors

aTreatment suppresses spermatogenesis by negative feedback on the 
hypothalamo–pituitary axis (hypogonadotropic hypogonadism).
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blockers may cause retrograde ejaculation due to 
dysautonomia. Serotonin reuptake inhibitor therapy may 
cause anejaculation due to neurological effects (117).

Obesity

Obesity is associated with a low serum SHBG and 
total testosterone, with normal serum LH and FSH 
(pseudohypogonadism). However, the pathogenesis of 
obesity on direct testicular dysfunction and spermato-
genesis remains less clear (118, 119). The rising preva-
lence of obesity is a major factor postulated to contribute 
to oligozoospermia (120). A  large meta-analysis of 21 
studies including 13 077 men performed by Sermondade 
et al confirmed a positive relationship between increasing 
body mass index (BMI) and risk of oligozoospermia and 
azoospermia (118). Furthermore, a systematic review of 
30 studies comprising 115 158 participants reported that 
obese men had a higher percentage of sperm with DNA 
fragmentation, abnormal morphology, and low mitochon-
drial membrane potential, and they were more likely to be 
infertile when compared with men with normal BMI (121). 
Previous observational studies have investigated the effects 
of dietary intervention on semen parameters during weight 
loss. Combined diet and exercise was associated with in-
creases in sperm count, semen volume, and testosterone 
when compared with baseline in those men losing the most 
weight (17.2–25.4% of body weight) (119). Furthermore, 
voluntary weight loss among male partners was independ-
ently associated with an increased live birth rate following 
in vitro fertilisation (IVF) therapy (122). Obesity is asso-
ciated with increased semen ROS levels and sperm DNA 
fragmentation. Increased aromatization of testosterone 
to estrogen may have direct negative testicular impact, 
as estrogen receptors are present in most cell types of the 
human testes, including Leydig and Sertoli cells (123). In 
addition, decreased testosterone levels are associated with 
leptin and insulin resistance of obesity by modulating the 
HPT axis at various levels (28, 124).

Emerging evidence in the burgeoning field of genetics 
and epigenetics has demonstrated that paternal obesity 
can affect offspring metabolic and reproductive pheno-
types by means of epigenetic reprogramming of sperm-
atogonial stem cells. Donkin et al (125) demonstrated that 
the expression level of specific mitochondrial RNAs, and 
small nuclear RNA (snRNA) fragments, was altered in the 
spermatozoa of men with obesity. They postulated that this 
altered expression modulated the expression of genes in-
volved in behavior and food intake and could participate 
in predisposing the offspring to obesity. This highlights 
the benefit of paternal preconception advise in relation to 
obesity.

Endocrine disrupting chemicals

Endocrine disrupting chemicals (EDC) may exert estro-
genic and/or antiandrogenic effects, or directly induce 
testicular toxicity by impairing Sertoli or Leydig cell 
function, increased oxidative stress, sperm DNA damage, 
or sperm epigenetic changes (126). Epidemiological 
and experimental studies have suggested that in utero 
exposure to EDC, including bisphenol A, phthalates, 
pesticides, and other environmental chemicals may dis-
rupt gonadal development during fetal life and lead to 
cryptorchidism, hypospadias, poor semen quality, and 
a predisposition to testicular germ-cell cancers (known 
as testicular dysgenesis syndrome) (127, 128). Several 
animal and in vitro studies have demonstrated that ex-
posure to EDCs during fetal, neonatal, and adult life has 
dose-dependent direct adverse effects on spermatogenesis 
and steroidogenesis (129). However, clinical evidence re-
mains limited (130). Inconsistencies in observations may 
be due to differential effects of EDCs depending on the 
developmental stage of exposure, degree of exposure, 
difference in study populations, synergistic effects from 
exposure to multiple EDCs, and residual confounding 
(eg, lifestyle factors).

Lifestyle factors

Cross-sectional studies demonstrate that adverse health 
behaviors such as excessive alcohol intake (131, 132), 
smoking (133), and recreational drugs (134, 135) are as-
sociated with reduced fertility in men (136, 137). In con-
trast, a large birth cohort of young men observed that 
recreational drugs were not associated with any semen 
variables (138). Much of the current evidence comes from 
men presenting to infertility clinics and may not represent 
the effect of lifestyle factors on male fertility in the gen-
eral population (139). In addition, almost all the studies 
focus on specific effects of 1 or at most 2 lifestyle factors 
under evaluation. In reality, exposure to these risk factors 
does not occur individually but simultaneously (140, 141). 
Therefore, we may be underestimating the consequences of 
each adverse lifestyle exposure to male infertility in the gen-
eral population.

Smoking. A meta-analysis including 5865 patients showed 
a negative association between smoking and semen 
parameters (142), with a pronounced negative effect on 
moderate and heavy smokers. Smoking is associated with 
lower sperm motility, increased sperm morphological 
defects, and lower sperm concentration and fertility index 
(FI) in heavy smokers compared with mild or nonsmokers 
(143). Smoking is also associated with poorer clinical 
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outcomes from ART (144). However, definitions of 
smoking vary between studies, and underlying mechanisms 
of male infertility are not elucidated.

Alcohol. Mice model studies have shown an association 
between the amount and duration of ethanol exposure with 
sperm quality and fertilization ability (145). Meta-analysis 
of 16  395 men from 15 cross-sectional studies showed 
that alcohol intake was negatively associated with semen 
volume and morphology, with a marked difference in daily 
versus occasional drinkers (146). A study of 1200 Danish 
male military recruits aged 18–28  years observed that 
modest habitual alcohol consumption of more than 5 units 
per week was associated with adverse effects on semen 
quality (147). Furthermore, ethanol has been proposed to 
be a Leydig cell toxin (148).

Recreational drug  use. Recreational drug use, such as 
cannabis, androgens, and opioid abuse is correlated with 
reduced sperm parameters (135), high DNA fragmentation 
in sperm, and reduced male fertility (149). Cannabinoid 
receptors are found in testicular cells and spermatozoa 
(150). Androgens may cause hypogonadotropic 
hypogonadism due to negative feedback on the HPT axis 
(151). These negative effects of androgen abuse on the HPT 
axis are fully but slowly reversible (apart from testicular 
volume and SHBG) 6 to 18 months after ceasing androgen 
intake in the majority of men (152). Opioids are known 
to cause secondary hypogonadism by inhibiting kisspeptin-
neurokinin B-dynorphin (KNDy) neuronal activity (153), 
but may also have direct testicular effects due to presence 
of endogenous opioid receptors through the testis (154).

Caffeine. Evidence on caffeine intake on testicular 
failure remains inconsistent and inconclusive. In in vitro 
cultured human Sertoli cells, high caffeine consumption 
was observed to reduce antioxidant capacity of Sertoli 
cells causing oxidative damage (155). However, a recent 
systematic review of observational studies in 19 967 men 
suggested that caffeine consumption did not adversely 
affect semen parameters but was associated with increased 
sperm aneuploidy and DNA breaks (156).

Physical activity. Men who are physically active have 
reported improvements in semen quality compared with 
sedentary controls (157). Therefore, supervised physical 
activity may improve reproductive function, especially if 
there are concomitant comorbidities such as diabetes and 
obesity. There is also some evidence that continuous high 
intensity strenuous physical activity may impair semen 
parameters compared with moderate intensity exercise 
(158). However, there are multiple potential confounding 

risk factors to this, including low body weight, fatigue 
leading to low libido, and abnormal calorie intake. 
Furthermore, published data for moderate-intensity 
exercise training are inconsistent. Other than the intensity 
of physical activity, the specific sport undertaken may also 
be important. Cycling represents a unique sport in regards 
to fertility. Prolonged or competitive cycling is associated 
with reductions in total motile sperm count and sperm 
concentration, and elevated sperm DNA fragmentation; 
this is due to increased scrotal temperature, which is 
known to damage sperm (159).

Assessment of Male Infertility Due to 
Testicular Failure

Testicular failure is often diagnosed incidentally during fer-
tility investigations. A thorough history and physical exam-
ination, including the testes (the most accessible internal 
organ of the body) are the most important components for 
assessing and managing male infertility (Fig. 1). A detailed 
clinical investigation may shed light on the underlying 
pathology of testicular failure and identify potentially re-
versible factors of therapeutic value to the couple (Table 5 
and Fig. 1).

History. Determine the frequency of intercourse and 
duration of infertility. There may be symptoms of 
hypogonadism, including decreased libido and morning 
erections. Clarify the details of puberty, past paternity, 
and any history of undescended testes or recent 
genitourinary infections. Determine medication history 
for gonadotoxic agents and past medical/surgical history 
for scrotal or pelvic irradiation, surgery or trauma (112). 
This is also a good opportunity to screen for comorbid 
systemic illnesses such as obesity and reversible causes 
such as alcohol excess, smoking, and recreational drug 
use (2).

Physical examination. Screen for secondary sexual 
characteristics and features of KS such as tall stature, 
gynaecomastia, and behavioral or educational problems. 
Location of urethral meatus should be confirmed, because 
it reflects prenatal androgen insufficiency. Testicular 
volume should be assessed using a Prader orchidometer. 
Reduced testicular volume (below 15 ml) by orchidometry 
is consistent with hypogonadism or testicular failure 
(160). Men may have untreated cryptorchidism or may 
have undergone orchidopexy as a child or adult; a small, 
previously undescended testis suggests testicular failure. 
Men with UDT also have a greater risk of germ cell 
tumours. A  full or dilated epididymis may indicate an 
obstructive etiology. Varicoceles are best viewed with the 
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patient standing and performing valsalva. Absence of the 
vasa deferentia may indicate CBVAD.

Investigations. These include endocrine hormone 
assessments (morning, fasted serum testosterone, LH, FSH, 
estradiol, SHBG), semen analysis, and/or ultrasound (US) 
of the testes, and appropriate genetic tests (161) (Fig. 1). 
Testosterone levels demonstrate a diurnal variation 
with maximum levels in the morning; overnight fasting 
increases morning serum testosterone (162) whilst food 
intake slightly suppresses these levels (163). Furthermore, 
various factors, including acute/subacute illness and several 
medications, may also affect the levels (164). A  typical 
feature of OA is an entirely normal endocrine profile 
(and testicular volume). By contrast, serum FSH is often 
elevated in testicular failure (165), but LH and testosterone 
secretion may be preserved. However, the discriminatory 
power of FSH is limited around the upper limit of the 
normal reference group, with an overlap of FSH levels 
in obstructive azoospermia and NOA (166). The upper 
reference limit for serum FSH may often be higher in 
commercial assay kits due to inclusion of unselected older 
men or those with unrecognized reproductive illness (167). 
Semen analysis should be performed on at least 2 different 

occasions with 2 to 7 days of abstinence in accordance with 
established WHO standards (34). Testing for karyotype 
and Y chromosome microdeletions are recommend for all 
infertile men with suspected NOA or severe oligozoospermia 
(112). CFTR mutation screening should be performed in 
men with suspected OA.

Testicular histology.  Testicular biopsy is almost always 
performed in association with surgical sperm retrieval 
(see section on ‘Surgical sperm retrieval techniques’). 
Spermatogenesis is classified histologically into 4 main 
patterns (168): complete spermatogenesis is seen in normal 
testes and obstructive azoospermia; hypospermatogenesis 
(all cell types present in correct ratio but reduced 
numbers); maturation arrest (failure of spermatogenesis 
beyond a certain stage); and SCO syndrome, ie, no germ 
cells present. The most severe of these histological patterns 
is SCO with complete absence of germ cells.

Principles of Management

There are no approved pharmacological treatments to 
stimulate spermatogenesis in primary testicular failure. As 
a result, treatment of severe male factor infertility, including 

Figure 1.  Flow diagram illustrating the assessment of an infertile male. The choice of investigations undertaken should be tailored to the clinical 
presentation and consider available health resources. *Typical diagnostic characteristics are provided, but some patients may have atypical char-
acteristics. Abbreviations: CBAVD, congenital bilateral absence of vasa deferens; FSH, follicle stimulating hormone; LH, luteinizing hormone; NOA, 
nonobstructive azoospermia; SHBG, sex hormone binding globulin.
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azoospermia or oligozoospermia encompasses ART such as 
IVF or intra-cytoplasmic sperm injection, which although 
effective, are unaffordable for some couples and healthcare 
systems (169) and have potential complications for the fe-
male partner, such as ovarian hyperstimulation syndrome 
(170). Utilization of ART is dependent on factors such 
as the availability of reproductive technology, the health 
system of the country, and funding from state or insurers. 
Principles of management are discussed below.

Optimization of chances for a spontaneous pregnancy. 
Factors that influence spontaneous conception include the 
duration of infertility, the age of the female partner, and the 
underlying disease causing infertility (171). The frequency 
of sexual intercourse should be 2 to 3 times weekly in order 
to optimize the likelihood of conception (172). Eighty 
percent of pregnancies will occur in the first 6 cycles with 
regular unprotected intercourse, while a further 10% of 

couples will conceive within 12  months, in line with the 
international definition of infertility. Furthermore, nearly 
50% of couples who did not conceive in the first 12 months 
will conceive by 36 months (173). Around 30% of couples 
in whom the male partner has a sperm concentration of 
1 to 5 million/ml will conceive spontaneously over 24 to 
36  months (174). Therefore, the finding of a low sperm 
concentration at 1 million/ml does not preclude natural 
fertility; however, the probability declines over time as 
sperm defects become more severe, together with the 
compounding effects of female age or co-existing disease. 
Five percent of couples remain infertile after 48 months of 
regular unprotected intercourse, with a poor prognosis for 
spontaneous pregnancy (175).

Lifestyle changes. In the absence of any effective 
pharmacological interventions, delivery of lifestyle advice 
represents potentially important treatment for couples 
with male infertility. The benefits of lifestyle measures 
on general health and wellbeing are uncontroversial. 
Recent evidence from mice models (176, 177) and 
human studies (178) suggests that amelioration of 
adverse lifestyle factors such as alcohol consumption and 
smoking cessation may improve markers of male fertility 
and quality of life (179). Despite observed improvements 
in semen parameters, the effects on pregnancy and live 
birth outcomes are limited (122, 180). Increased BMI 
is negatively correlated to male fertility (118); however, 
there is inconclusive evidence from interventional studies 
to suggest that weight loss is an effective therapy for male 
infertility. Bariatric surgery is the most effective weight 
loss therapy for obesity. However, a longitudinal study 
by Legro et al (181) observed a paradoxical reduction in 
sperm concentration during the first 6 months following 
bariatric surgery. A  recent meta-analysis concluded that 
bariatric surgery has no overall effect on sperm function 
in men with obesity up to 24 months postsurgery, despite 
normalization of the reproductive hormone profile (182). 
Recent observational studies have suggested that milder 
weight loss is associated with improved sperm function in 
obese men with infertility (122). Hakonsen et al conducted 
an uncontrolled study in 43 men, with obesity reporting 
that men losing the most weight (17.2–25.4% of body 
weight) had an increase in sperm count, semen volume, 
and testosterone when compared with baseline (119). Mir 
et  al also showed that weight loss leads to a significant 
reduction in the DNA fragmentation index and, therefore, 
improved sperm morphology (183). However, data on 
ART outcomes are lacking. A recent meta-analysis showed 
that moderate intensity exercise can improve sperm 
concentration and progressive motility parameters (184). 

Table 5.  Assessment of male infertility

Typical Components of Fertility History
Duration of infertility
Frequency of intercourse
Symptoms of androgen deficiency, eg, low libido, decreased 

morning erections
Puberty
Past paternity
Undescended testes
Genitourinary infections
Gonadotoxic medications
Pelvic, bladder, or retroperitoneal surgery
Testicular trauma, torsion
Systemic illness, eg, obesity. diabetes, cancer, cardiovascular disease
Lifestyle factors, eg, alcohol, smoking, recreational drugs
Typical Components of Physical Examination
Secondary sexual characteristics
Features of Klinefelter’s syndrome, eg, tall stature
Location of urethral meatus
Testicular volume
Presence/absence of vasa deferens
Testicular mass, eg, varicocele
Undescended testes
Typical Investigations
Endocrine profile (early morning LH, FSH, testosterone, SHBG)
Semen analysis (at least 2 samples)
+/- US testis
Genetic counselling
Karyotype, Y-chromosome microdeletions (if severe 

oligozoospermia or azoospermia)
CFTR if obstructive azoospermia or CBAVD

Abbreviations: CBAVD, congenital bilateral absence of vasa deferens; CFTR, 
cystic fibrosis transmembrane regulator; FSH, follicle stimulating hor-
mone; LH, luteinizing hormone; SHBG, sex hormone binding globulin; US, 
Ultrasound.
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In conclusion, paternal preconception health advise may 
improve lifestyle factors, with a positive effect on sperm 
parameters.

Putative Hormonal Therapies for 
Testicular Failure

Gonadotropin replacement therapy and antiestrogens such 
as selective estrogen receptor modulators (SERMs) and 
aromatase inhibitors are empirically administered to men 
with azoospermia prior to surgical sperm retrieval, but ro-
bust evidence of their efficacies is currently lacking (185).

Gonadotropins. Gonadotropin therapy is highly effective 
for gonadotropin deficiency (14, 15) but not necessarily 
for men with idiopathic oligozoospermia. A  Cochrane 
review of 6 RCTs with 456 participants observed a 
cumulative improvement in the live birth rate and 
spontaneous pregnancy rate in couples where male 
partners received FSH when compared with no treatment 
or placebo (186). However, the number of RCTs and 
participants included were small, with insufficient 
evidence to allow firm conclusions. Another prospective 
study of men with idiopathic oligozoospermia and 
normal FSH levels reported significantly improved sperm 
retrieval rates, fertilization, and pregnancy rates post-
TESE-ICSI in men treated with FSH versus untreated 
controls (187). A  recent meta-analysis of 15 controlled 
studies (9 RCTs, 6 nonrandomized studies) with 614 
men treated with FSH and 661 men untreated or treated 
with placebo showed an improvement in pregnancy rate 
after FSH administration both spontaneously and after 
ART in men with idiopathic infertility (188). There was 
no significant difference in the mean basal FSH levels 
between the treated and nontreated groups of men 
included in this meta-analysis.

Antiestrogens. Selective estrogen receptor modulators 
reduce estradiol feedback and so disinhibit GnRH 
and pituitary gonadotropin secretion and increase 
testicular stimulation. Aromatase is an enzyme that 
converts testosterone and androstenedione to estradiol 
and estrone, respectively. Similar to SERMs, aromatase 
inhibitors decrease the negative estradiol feedback on the 
HPT axis (189, 189). A meta-analysis of 11 RCTs reported 
significant improvement in sperm concentration, motility, 
and spontaneous pregnancy rate in men with idiopathic 
infertility and OAT on antiestrogen therapy compared 
with controls (190). Another latest meta-analysis of 
idiopathic normogonadotrophic oligozoospermic men 
included 16 (controlled and noncontrolled) studies with 
improvement in sperm concentration, total sperm count, 

LH, FSH, and total testosterone levels following treatment 
with SERMs in men with idiopathic oligozoospermia 
(191). Similarly, one small randomized controlled 
study of 46 patients with NOA and cryptozoospermia 
(22 men received letrozole vs 22 men received placebo 
for 6  months) observed a significant increase in sperm 
concentration, motility, FSH, LH, and testosterone, 
with a reduction in estradiol in the men who received 
Letrozole versus placebo (192). However, the current 
data is controversial and heterogenous to draw any firm 
conclusion. Furthermore, there is lack of standardization 
on the duration of treatment, dose/type of antiestrogen 
therapy, and baseline patient characteristics.

The use of any of these pharmacological therapies for 
testicular failure pre-ICSI or TESE is controversial (193), 
and their usage is not supported by current guidelines (2, 
112). The safety profiles of these off-label medications have 
not been established in men. Furthermore, there is no cur-
rent consensus on the optimal medication and consider-
able ambiguity exists as to the perceived effects on fertility. 
Furthermore, antiestrogen therapies have associated risks 
such as increased thromboembolic disease, gynaecomastia 
with detrimental effects on male sexual function (sexual 
desire and erectile function), (194, 195) and long-term ad-
verse effects on bone mineral density (196).

Nevertheless, many clinical centers consider these empir-
ical medical therapies in specific cases, for example, in cases 
without elevated FSH (primary spermatogenic failure) and 
idiopathic oligozoospermia (197, 198), with the rationale 
being to increase FSH levels to stimulate spermatogenesis 
and optimize intratesticular testosterone, pre- ART. Future 
good quality multicenter RCTs are needed to better define 
the efficacy of these pharmacological agents.

Surgical sperm retrieval techniques

Sperm retrieval techniques. Men with obstructive 
azoospermia can be treated with epididymal or testicular 
sperm extraction, although epididymal extraction is 
typically less invasive (199). Epididymal sperm extraction 
can be done by microsurgical epididymal sperm aspiration 
(MESA), percutaneous epididymal sperm aspiration 
(PESA), reconstructive surgery. Men with NOA require 
testicular sperm extraction to search for areas of focal 
spermatogenesis for use during ICSI; this is performed by 
TESA (fine-needle transcutaneous aspiration, minimally 
invasive) or TESE/micro-TESE (scrotal incision with open 
testicular biopsy with or without a microscope to identify 
the seminiferous tubules) (200) (Fig. 2). A meta-analysis of 
21  404 men with NOA observed that TESE/micro-TESE 
results in a testicular sperm retrieval rate of up to 50% in 
men with nonobstructive azoospermia, independent of age 
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and hormonal profile (201). Currently, there are no clinical 
factors or biochemical tests that can reliably predict sperm 
retrieval in men with NOA prior to surgery. However, 
genetic disorders such as AZFa/AZFb microdeletions or XX 
male syndrome are contraindications to TESE due to their 
incompatibility with spermatogenesis. A  meta-analysis of 
men with NOA due to KS suggested successful spermatozoa 
retrieval in up to 50% of cases, with nearly 50% pregnancy 
and live birth rates after TESE-ICSI, independent of male 
age, testes volume, and reproductive endocrine profile 
(202). Several groups have reported healthy offspring born 
after TESE-ICSI, with sperm extracted from men with KS 
(203), with the risk of chromosomal abnormalities being 
similar to those reported in men without KS. It is interesting 
to consider whether cryopreservation negatively impacts 
the reproductive potential of sperm. Cryopreservation 
increases the proportion of sperm in a sample which are 
immotile and/or nonviable (204). However, there does 
not appear to be evidence suggesting that cryopreserved 
testicular sperm negatively influences the pregnancy 
and live birth outcomes after TESE-ICSI (205). TESE 
complications include intratesticular hematoma and 
fibrosis. A recent meta-analysis reported that mean levels 
of total serum testosterone were reduced in men with NOA 
6 months after TESE, with a recovery time ranging between 
18 and 26 months (206). Therefore, endocrine surveillance 
for hypogonadism should be considered in men with NOA 
post-TESE.

Effects on offspring following ART for male 
infertility

It is important to consider whether the offspring of affected 
couples have increased risks of congenital defects potentially 
transferred through genetic and epigenetic mechanisms (207, 
208). Multiple studies have suggested that the risk of sex and 
autosome chromosomal abnormalities is higher in offspring 
born following ICSI (commonly indicated in men with poor 
sperm quality) versus the general population (209, 210). In 

contrast, neonatal health, including birth parameters, major 
anomalies, and chromosomal abnormalities in a large co-
hort of children born with nonejaculated (epididymal and 
testicular) sperm, was similar compared with the outcome 
of children born with ejaculated sperm (211). Other studies 
have supported these findings (212, 213). However, there are 
multiple limitations to these studies, with limited sample size, 
and that are often performed without control groups. Further 
elucidation of the heritable factors causing male infertility 
will enable more robust screening and counselling of couples 
undergoing ART.

Conclusion

Underlying genetic predisposition, exposure to environ-
mental factors, and adverse lifestyle behaviors contribute 
to the etiopathogenesis of testicular dysfunction. However, 
40% of cases of testicular failure remain classified as idio-
pathic. Future research is needed to determine unidentified 
factors causative in idiopathic male factor infertility. This 
would lead to novel individualized and targeted pharma-
cological therapies to complement ART, which is unafford-
able to many couples worldwide.
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