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Recent advances in emerging PCOS therapies
Kelly A. Glendining and Rebecca E. Campbell

Abstract

Polycystic ovary syndrome is a prevalent endocrinopathy
involving androgen excess, and anovulatory infertility. The
disorder is also associated with many comorbidities such as
obesity and hyperinsulinemia, and an increased risk of car-
diovascular complications. Reproductive, endocrine, and
metabolic symptoms are highly variable, with heterogenous
phenotypes adding complexity to clinical management of
symptoms. This review highlights recent findings regarding
emerging therapies for treating polycystic ovary syndrome,
including i) pharmacological agents to target androgen excess,
if) modulation of kisspeptin signalling to target central neuro-
endocrine dysregulation, and iii) novel insulin sensitisers to
combat peripheral metabolic dysfunction.
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Introduction

Polycystic ovary syndrome (PCOS) is a complex endocrine
disorder that is a leading cause of infertility in reproduc-
tive aged women [1,2], and with an increasing incidence
globally [3]. The most widely accepted guidelines for a
clinical diagnosis of PCOS requires the presence of a
minimum of two out of three principal features: physical or
biochemical signs of androgen excess, ovulatory disfunc-
tion, and polycystic ovarian morphology [4]. However, a
range of comorbidities are also associated with the disor-
der, including obesity, insulin resistance, type 2 diabetes,
and cardiovascular conditions [5—8], contributing to
heterogenous phenotypes. Currently, there is no cure for
PCOS, with therapies centred on the management of
symptoms, and/or assisted fertility. This review will

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in

Pharmacology

Check for
Updates

provide a brief summary of PCOS pathophysiology, and
current standard treatments for PCOS, followed by an
overview of recent findings regarding novel and emerging
therapeutic strategies in PCOS management. In partic-
ular, focussing on pharmacological targeting of androgen
excess, central neuroendocrine dysfunction, and periph-
eral metabolic pathophysiology.

Pathophysiology of PCOS

Primary neuroendocrine dysfunction may play a role in
the etiology of some forms of PCOS [9]. Neuroendo-
crine regulation of fertility is controlled by the gonad-
otropin releasing hormone (GnRH) neurons. The
release of GnRH peptide in a pulsatile pattern stimu-
lates secretion of the gonadotropins luteinising hor-
mone (LLH), and follicle stimulation hormone (FSH)
from the anterior pituitary. LH and FSH act in synergy
at the ovary to drive folliculogenesis, steroidogenesis,
and ovulation in normal menstrual cycle physiology.
With PCOS, however, there is an increased pulse fre-
quency of GnRH, and GnRH secretion, which biases
pituitary secretion of LH over FSH. This disrupted
gonadotropin profile impairs normal maturation of the
ovarian follicle and ovulation, leading to thecal cell hy-
perplasia and increased ovarian androgen production
[10]. In turn, the hyperandrogenic ovarian state dis-
rupts gonadal steroid hormone negative feedback acting
back on the hypothalamus, with ovarian oestradiol and
progesterone less effective to lower LH pulse frequency
in patients with PCOS, and further exacerbating
elevated GnRH-mediated LH release. Insulin resis-
tance and hyperinsulinemia are also common in PCOS,
independent of BMI [5], and deficits in insulin action
can exacerbate ovarian androgen production. Together,
these pathologic processes create a self-perpetuating
loop of impaired HPG axis function in PCOS.

Current recommended treatments for PCOS

Current PCOS therapies are symptom-driven, and also
depend on whether fertility treatment is being sought.
For women with PCOS that are not seeking assistance
with fertility, combined oral contraceptive pills (OCs)
comprised of oestrogens and progestins are commonly
prescribed to treat menstrual irregularities and physical
manifestations of hyperandrogenism (hirsutism, acne,
and androgen-related alopecia) [4]. OCs have several
anti-androgenic effects. Oestrogens and progestins
reduce gonadotrophin release from the pituitary, and
reduce androgen production downstream in the ovaries,
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ultimately decreasing levels and bioavailability of
testosterone. Where cosmetic procedures and OCs are
suboptimal for treating hyperandrogenism, additional
anti-androgen medications may be used. These either
block the androgen receptor (AR) or modulate the
androgen biosynthesis pathway (e.g. spironolactone,
finasteride). For metabolic features of PCOS, weight
loss and dietary techniques alone or in combination
with oral insulin sensitisers (e.g. metformin) are
recommended [4].

For women with PCOS seeking fertility treatment, an
alternate approach is necessary, as OCs prevent ovula-
tion, and anti-androgens are detrimental for a male
fetus. Instead, weight loss techniques and owvulation
induction agents are typically advised. Letrozole is a
first-line pharmacological intervention to induce ovula-
tion. Letrozole prevents the aromatase-induced con-
version of androgens to oestrogens and this, in turn,
increases the secretion of FSH, presumably due to
reduced negative feedback, to stimulate follicular
maturation [11]. A selective oestrogen receptor modu-
lator clomiphene citrate is also used for ovulation in-
duction, often in combination with metformin, but may
increase endometrial cancer risk [12]. Women with
PCOS undergoing fertility treatment with either letro-
zole or clomiphene citrate are at an increased risk of
ovarian hyperstimulation syndrome (OHSS), a serious
side effect that impacts the ovarian vasculature and
which, in some cases, can require hospitalisation.

Novel and emerging strategies for treatment
of PCOS

While current treatment strategies for the endocrine,
metabolic, and reproductive features of PCOS are
effective, there is still a need for improvement. First,
many current therapies are associated with adverse side-
effects, for example, weight gain associated with the use
of OCs, gastrointestinal issues linked to metformin, and
increased risk for OHSS in fertility treatments. Second,
hormone treatments are not always appropriate, for
instance in individuals where oestrogen-therapy is
contraindicated, such as breast cancer, venous throm-
boembolism, and stroke. Fortunately, there are a number
of novel treatments for PCOS management that are
showing potential in preclinical animal models, and in
early clinical studies (summarised in Table 1).

New treatments targeting androgen excess

Hyperandrogenism contributes to the central patho-
genesis of PCOS and underlies many of the troubling
overt symptoms for PCOS patients. Consistent with
this, animal models that recapitulate the metabolic and
reproductive features of PCOS are typically generated
by prenatal or peripubertal exposure to excess androgens
[13]. Therapeutic reduction of androgens, or AR
blockade, are therefore important strategies in PCOS

treatment. Early timing of anti-androgen treatment
might also be critical for improving fertility outcomes. A
retrospective population-based study in Sweden found
women with PCOS who had early intervention with
anti-androgen treatment (before 18 years) had an
improved fertility rate compared to those with later in-
terventions [14]. Further, studies in mice indicate that
excess androgens may have long-term impacts on follicle
and oocyte quality that can continue to impair fertility,
even after restoration of hyperandrogenism [15].

Direct AR antagonists can cross-react with GABA-A
receptors in the brain, increasing the risk of seizures
[16]. To circumvent this risk, peripherally selective
second generation AR antagonists have limited capac-
ity to cross the blood brain barrier, and could be a viable
tool for PCOS therapy. Indeed, a clinical trial found
peripherally selective AR antagonist bicalutamide
(Casodex) in combination with OCs was more effective
in treating hirsutism in women with PCOS than
treatment with OCs and placebo [17]. Darolutamide
(ODM-201, Nubeqa) is another AR antagonist with
low blood-brain barrier penetrance [18], which has
recently gained approval in several countries for treat-
ment of some prostate cancers, however no trials
testing darolutamide as a treatment in PCOS are
currently underway. While peripheral AR antagonists
may be beneficial for cosmetic hyperandrogenism-
related PCOS symptoms in women, use of direct AR
blockers is unfortunately not viable for patients
seeking fertility treatment, due to fetal risks. Further,
animal models indicate the central reproductive and
metabolic deficits of PCOS arise from androgen actions
in the brain, and not the periphery [19].

While the ovaries are likely the predominant source of
excess androgens in PCOS, adrenal androgens may also
be important. For example, studies have shown that up to
50% of women with PCOS have elevated dehydroepi-
androsterone sulphate (DHEAS) - a marker of adrenal
androgen production [20]. Also, women with congenital
adrenal hyperplasia display many PCOS-like features,
including polycystic appearance of the ovary [21]. One of
the functions of adrenal androgens is to mediate the
stress response via the hypothalamic-pituitary-adrenal
(HPA) axis. In response to stress, hypothalamic
corticotropin-releasing hormone (CRH) activates the
CRH receptor CRHRI1, and adrenocorticotropic hor-
mone release from the pituitary, which in turn stimulates
adrenal release of cortisol and androgens. It is unclear if
HPA hyperactivity, or adrenal androgen production,
contributes to hyperandrogenism in PCOS. However, a
rodent study found disrupted hypothalamic Cr/% and
Crhrl expression in a prenatally androgenised mouse
model of PCOS [22]. Further, a recent study reported
adrenal androgen production in adolescents with PCOS
correlated with hirsutism severity [23]. Interestingly, a
modulator of CRH signalling is currently being explored
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Table 1

Novel and emerging strategies for treatment of PCOS.

Type Class Name Therapeutic target Study type QOutcome Ref.
Androgen modulator AR antagonist Bicalutamide Hyperandrogenism Human, phase 3 double Improved reduction of [17]
blind RCT hirsutism when combined
with OC
CRHR1 antagonist Tildacerfont Hyperandrogenism Human, phase 2, RCT Recruiting in progress
ClinicalTrials.gov
Identifier: NCT05370521
Sex steroid SHBG Hyperandrogenism Human GWAS Higher SHBG levels may [27]
transporter protein protect from PCOS
comorbidities
Hyperandrogenism, Human genetic association Potential causal link [26]
comorbidities studies between low SHBG and
PCOS
Incretin/incretin GLP-1 receptor Semaglutide IR, Hyperandrogenism, Human, meta-analysis of Reduced BMI, improved [55]
modulator agonists obesity published RCT HOMA-IR compared with
metformin, side-effects of
headache and nausea
Exenatide IR, obesity Human, Randomised single Improved HOMA-IR, insulin [50]
blind comparative study sensitivity, blood glucose
either alone or in
combination with SGLT2
inhibitor
Liraglutide Hyperandrogenism, obesity Human, RCT Reduced free androgens [583]
and body weight in
comparison to placebo
DPP-4 inhibitors Sitagliptin Hyperandrogenism Rat, DHEA model of PCOS Reduced T [58]
Sitagliptin & metformin IR Rat, HCG & Insulin model of Improved HOMA-IR [59]
PCOS with IR
Sitagliptin IR, obesity Human, double blind Improved blood glucose in [60]
crossover study GTT, decreased visceral
fat
Insulin sensitiser SGLT 2 inhibitors Empagliflozin IR Human Phase 4 Weight loss, no change in [49]
randomised open-label HOMA-IR
trial
Canagliflozin IR Human, prospective Weight loss, improved [48]
randomised open-label HOMA-IR, improved
trial menstrual cyclicity,
reduced uric acid,
reduced DHEA-S.
SGLT1/2 inhibitor Licogliflozin (LIKO66) IR, hyperandrogenism Human, RCT Reduced [51]
hyperinsulinaemia,
improved HOMA-IR,
reduced
hyperandrogenaemia
Mitochondrial- Humanin IR Rat, DHEA model of PCOS Decreased body weight, [46]

derived peptide

Human, in vitro

serum oestradiol/DHEA,

(continued on next page)
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Table 1. (continued)

Type Class

Name

Therapeutic target

Study type

QOutcome

Ref.

Neuroendocrine
modulator

GnRH receptor
antagonist

Kisspeptin receptor
agonist

NK3R antagonist

Kappa receptor

Cetrorelix

MVT-602

Fezolinetant

Difelikefalin

IR

GnRH hyperactivity

GnRH hyperactivity

GnRH hyperactivity

GnRH hyperactivity

Rat, DHEA model of PCOS
Mouse - AMH model of
PCOS

Human, crossover RCT
& Human in vitro, Mouse
in vitro,

Human - Phase 2a, RCT

Mouse — PNA model of

& restored ovarian
morphology in PCOS-like
rat, improved oxidative
stress in cell line
Beneficial effects on IR,
Improved HOMA-IR
Increased LH concentration
and pulsatility, restored
estrous cyclicity and
ovarian morphology
Induced sustained LH peak
in healthy women and
women with PCOS,
increased Kiss1R
signalling in Kiss1R
transfected HEK293 cells,
increased GnRH neuron
firing in mouse brain
slices
Reduced serum LH,
LH:FSH, reduced T
Reduced LH and T,

agonist — PCOS improved estrous cycling,
peripherally improved ovarian
restricted morphology

[45]

[29]

[35]

[39]

[42]
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Abbreviations: AMH, Anti-mullerian hormone; AR, Androgen receptor; CRHR1, Corticotropin releasing hormone receptor 1; DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sulphate;
dipeptidyl peptidase-4, DPP-4; FSH, follicle-stimulating hormone; GnRH, gonadotropin releasing hormone; GTT, Glucose tolerance test; HCG, Human Chorionic Gonadotrophin; HOMA-IR, homeostatic
model assessment of insulin resistance; IR, Insulin resistance; LH, luteinising hormone; NK3R, Neurokinin 3 Receptor; PCOS, Polycystic ovary syndrome; PNA, Prenatal androgen; OC, Oral
contraceptives; RCT, Randomised Controlled Trial; SHBG, Sex Hormone Binding Globulin; SGLT, Sodium glucose co-transporter; T, testosterone.
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as a potential PCOS therapy. Tildacerfont is a non-
steroidal, oral CRHR1 antagonist which inhibits pitui-
tary ACTH to limit the production of adrenal androgens.
A phase 2, randomised clinical trial examining the safety
and efficacy of tildacerfont in women with PCOS who
have elevated adrenal androgens is currently
recruiting (NCT05370521), with initial outcomes ex-
pected before mid-2023.

An alternate method for targeting androgen excess is to
reduce androgen bioavailability. Sex hormone-binding
globulin (SHBG) is a sex hormone transporter with
high affinity for testosterone, that directly modulates
the clearance and bioavailability of sex steroids in the
blood and target tissues. Growing evidence indicates
SHBG could be a promising diagnostic biomarker for
PCOS, and a potential therapeutic target. Lower SHBG
levels are associated with PCOS [24], and recent ge-
netic association studies indicate this may be a causal
link [25,26]. Of interest, a recent GWAS study found
women with higher SHBG to have a reduced incidence
of PCOS comorbidities [27], which suggests that ther-
apeutically increasing SBHG levels in women with
PCOS could have a protective effect.

Clinical targeting of neuroendocrine
dysfunction

Direct modulation of GnRH with GnRH antagonists is
utilised in fertility treatments to decrease GnRH-
mediated release of LH and FSH in controlled ovarian
stimulation. In women with PCOS however, OSS risk is
high, and GnRH antagonists often result in the produc-
tion of an increased number, but decreased quality of
oocytes [28]. Outside of fertility treatment, there is a lack
of clinical evidence that GnRH antagonists would be of
benefit for PCOS therapy. However, an investigation in a
PCOS mouse model generated by prenatal exposure to
anti-Mullerian hormone shows some promise. Intermit-
tent treatment with the GnRH antagonist cetrorelix
rescued reproductive and neuroendocrine PCOS-like
features in this mouse model [29]. Other novel neuro-
endocrine PCOS treatments are aimed at reducing
GnRH pulsatility by targetting upstream inputs within
the GnRH neuronal network that are sensitive to
oestrogen, progesterone, and androgens produced by the
ovary. The best known therapeutic target to achieve this
is a hypothalamic population of neurons that co-express
the neuropeptides kisspeptin, neurokinin B, and dynor-
phin, known as ‘KNDy’ neurons, and which are recog-
nised as key for GnRH pulse generation (Figure 1.)
[30,31]. Kisspeptin and neurokinin B have stimulatory
actions on GnRH secretion, whereas dynorphin is inhib-
itory. Loss of function gene mutations in KISS1R, the
kisspeptin receptor, and 7AC3 or TACR3 (encoding
neurokinin B and its receptor, respectively) result in
hypogonadal hypogonadism [32—34].

Modulation of kisspeptin

A kisspeptin receptor agonist, MV'T-602, has recently
been investigated as a novel therapeutic strategy for
fertility treatment in PCOS. In a clinical trial, MV'T-
602 administration was found to produce a markedly
prolonged increase of LLH levels in healthy control
women in comparison with native kisspeptin (KP54)
(time of peak LH: 21—22 h vs. 4.7 h, respectively), and
a single injection of MV'T-602 also increased LH levels
in women with PCOS [35]. In parallel with the clinical
trial, the authors performed i vitro studies that simi-
larly showed an extended duration of action of MV'T-
602. A Kiss1R transfected HEK-293 cell line treated
with MVT-602 had increased levels of a downstream
signal of kisspeptin, inositol monophosphate, in com-
parison to kisspeptin-54 treatment. In addition, elec-
trophysiological recordings from GnRH neurons in
mouse brain slices showed MVT-602 induced a rapid
GnRH firing rate over a prolonged period in comparison
to native kisspeptin. While this clinical trial consisted
of a small sample size (six women with PCOS, six with
HA, and nine healthy controls), the results of this pilot
study show promise for the development of novel
modulators of Kkisspeptin signalling in assisted
fertility treatments.

Modulation of neurokinin B

An alternative strategy to block KNDy-mediated stim-
ulation of GnRH secretion is modulation of neurokinin
B activity via its cognate neurokinin 3 receptor (NK3R).
Results from Phase 2 clinical studies demonstrate that
oral administration of the NK3r antagonist MLLE4901
can reduce LH pulse frequency, and serum levels of LH
and testosterone in women with PCOS [36,37]. In a
chronic dihydrotestosterone (DHT)-treated mouse
model of PCOS, MLE4901 was found to reverse PCOS-
metabolic traits including decreasing adiposity, although
reproductive deficits were not ameliorated in this model
[38]. Although MILE4901 has since been discontinued
due to a rare hepatotoxic side effect, another NK3r
antagonist fezolinetant (ESN364) developed for the
treatment of vasomotor symptoms in postmenopausal
women has shown promise in treating PCOS in early
clinical trials. A recent Phase 2a, randomized, double-
blind, placebo-controlled study found that oral admin-
istration of fezolinetant for 12 weeks significantly
reduced serum LH and testosterone in women with
PCOS [39]. Importantly, fezolinetant is structurally
unrelated to MLE4901, and has shown no adverse he-
patic effects [40]. A Phase 3 long-term safety study has
also recently been completed, and although at the time
of writing the results have not been published, a New
Drug Application (NDA) for fezolinetant has been
submitted to the U.S. Food and Drug Administra-
tion (FDA).
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Modulation of dynorphin

Targeting the dynorphin receptor kappa opioid to
enhance dynorphin-mediated inhibition of kisspeptin
secretion is another potential avenue for restraining
GnRH pulsatility in PCOS. Indeed, there is some evi-
dence from animal models that modulating these re-
ceptors can impact LH pulsatility [41,42]. Kappa opioid
receptors are expressed in the arcuate nucleus by KNDy
neurons, as well as non-KNDy neurons, therefore it is
unknown whether the antagonist effects on LH pulsa-
tility are mediated directly via KNDy neurons or their
afferents. However, loss of non- KNDy expressing KOR
cells in the arcuate nucleus has been shown to increase
LH pulse frequency in ovariectomised rats [43]. Inter-
estingly, kappa receptor modulation may additionally
exert effects on body weight, with emerging evidence
implicating kappa opioid receptors in metabolism [44].

Treatments targeting insulin resistance

Hyperinsulinemia and insulin resistance is common in
PCOS, both in obese and non-obese women. Further,
insulin excess contributes to hyperandrogenism by
exasperating ovarian androgen production, as well as
reducing SHBG to increase bioavailability of

testosterone. A lack of protection from cardiovascular
risks by metformin, as well as adverse gastrointestinal
side effects, has motivated the search for alternative
insulin sensitising agents for managing insulin resistance
in PCOS, including hHumanin analogues, sSodium
glucose co-transporter inhibitors, and incretin mimetics.

Humanin

Humanin is a mitochondrial-derived peptide with pro-
tective effects under stress conditions in a number of cell
types including neurons, leukocytes and gonadal cells. A
recent study found decreased expression of humanin in
ovarian follicular fluid and granulosa cells of PCOS pa-
tients with insulin resistance, but not in patients with
PCOS without insulin resistance [45]. In the same study;,
they found supplementation of DHEA-induced PCOS-
like rats with a humanin analog improved plasma fasting
glucose and insulin in a dose-dependent manner [45].
Other work by this group also showed that humanin
supplementation in a DHEA-induced rat model of
PCOS could decrease PCOS-associated body weight
gain and restore ovarian morphology [46]. The DHEA-
induced rat model of PCOS has some limitations how-
ever [13], and a recent commentary highlighting this

Current Opinion in Pharmacology 2023, 68:102345
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work cautions that further studies on humanin analogs in
additional animal models of PCOS are needed [47].

Sodium glucose co-transporters (SGLT1, SGLT2)
SGLT?2 inhibitors are a recent class of anti-diabetic drug
used in the treatment of type 2 diabetes. They primarily
act to improve blood glucose by inhibiting renal glucose
absorption, and increase urinary glucose excretion, but
can also cause weight loss and increase insulin sensitivity,
presenting a promising alternative to insulin sensitising
drugs in the treatment of PCOS co-morbidities. While
data are limited, recent clinical trials comparing the ef-
ficacy of SGLIT'2 inhibitors in overweight/obese patients
with PCOS indicates substantial benefits over standard
metformin treatment, with significantly reduced body
weight [48,49], decreased serum DHEAS, and fewer
medication-related adverse effects [48]. Similarly,
women with PCOS who received 24 weeks treatment of
the SGLT?2 inhibitor dapaglifiozin had reduced body
weight, fasting glucose, and blood pressure, but also
lowered serum total testosterone and free androgens,
and increased SHGB levels [50].

Whereas SGLIT'2 regulates glucose uptake in the kidney,
a different transporter type SGLT'1, mediates glucose
uptake in the intestine. A recent short-term (2 week)
Phase 2 trial on a dual SGLI'1/2 inhibitor licogliflozin
(LIK066) in women with PCOS found this dual treat-
ment significantly reduced serum insulin and androgen
levels in comparison to treatment with placebo [51].
Although these early trials are limited by small sample
size, and direct comparisons are difficult due to dis-
crepancies in the controls used and differences in trial
duration, results of a recent meta-analysis of SGLT2
studies support a positive association of SGLI2 in-
hibitors on metabolic parameters in PCOS [52].
Although not yet approved for use in PCOS, preliminary
results from these clinical trials suggest that SGLT2
inhibitors show promise as a new potential therapy
for PCOS.

Incretin mimetics

Incretins are hormones which are produced in the gut in
response to food, stimulating glucose-dependent insulin
release, and include glucose-dependent insulinotropic
peptide (GIP), and glucagon-like peptide 1 (GLP-1).
There is inconsistent data regarding whether incretin
hormone levels are altered in PCOS, however incretin
mimetics such as the GLP-1 receptor (GLP-1R) analogs
have shown promise in PCOS treatment. For example, a
clinical trial found the GLP-1R agonist Liraglutide reduced
free androgens and body weight, and improved insulin
sensitivity in comparison to placebo, in hyperandrogenic
PCOS women [53]. Similarly, the GLLP-1R agonist Sema-
glutide had improved effects over metformin on insulin

resistance and weight loss in overweight and obese patients
with PCOS [54,55]. In addition to effects in peripheral
tissues, there is some evidence GLLP-1R analogues modu-
late GnRH release. For example, GLP-1 neurons from the
brain stem directly innervate a subset of GnRH neurons in
mouse hypothalamus, and optogenetic stimulation of the
GLP-1 afferents decreases the firing rate of GnRH neurons
[56]. Further, a study in female rats found the proestrous
LH surge is increased after intracerebroventricular or
subcutaneous administration of GLP-1, and decreased by
treatment with a GLP-1R analogue [57]. Interestingly,
combined treatment of GLP-1R analogs with SGLI'2 in-
hibitors may improve metabolic outcomes. For example,
obese women with PCOS treated with GLP-1R agonist
exenatide in combination with a SGLIT'2 inhibitor dapa-
gliflozin, had significantly improved weight loss, mean
blood glucose, insulin sensitivity and secretion over either
treatment alone, or combined dapagliflozin/metformin
treatment [50]. Despite showing promise in PCOS ther-
apy, use of GLP-1R analogs may be limited by the fact they
are administered by injection, and are associated with
gastrointestinal side effects.

Incretins are rapidly inactivated by the enzyme dipep-
tidyl peptidase 4 (DPP4), and DPP-4 inhibitors are an
anti-diabetic medicine shown to increase GLP-1 and
GIP. Rodent models of PCOS show the DPP-4 inhibitor
sitagliptin can improve insulin resistance, and reduce
testosterone [58,59]. Clinical studies on DPP-4 in-
hibitors in PCOS are limited, but a recent study indi-
cated sitagliptin could reduce visceral adiposity and
improve insulin-glucose signalling in women with

PCOS [60].

Conclusion

There are a number of promising new therapies for
PCOS emerging, which comprise a range of pharmaco-
logical strategies to target androgen excess, central
neuroendocrine dysfunction, and/or metabolic patho-
physiology (see Table 1). While there are no current AR
antagonists approved for the treatment of PCOS, there
is growing interest in the potential of therapeutic
modulation of SHBG to manage hyperandrogenism.
Recent evidence from clinical studies indicates that
modulators of the KNDy neuronal network that target
the central neuroendocrine pathophysiology of PCOS
may also be incredibly useful therapeutic tools. Simi-
larly, humanin, SGLT?2 inhibitors, and incretin mi-
metics, show promise in mitigating metabolic
dysregulation in PCOS. These emerging PCOS thera-
pies have the potential to improve patient outcomes in
the future, beyond currently available strategies. How-
ever, further clinical investigations are needed to verify
their efficacy and safety, particularly over the long term,
and across PCOS phenotypes.
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