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Abstract

Testosterone, the main endogenous active androgen, is used to treat many clinical
conditions, such as hypogonadism, infertility, erectile dysfunction, osteoporosis,
anemia, and in transgender therapy (female-to-male transsexuals). Androgens are
also used by athletes to enhance performance and endurance, and by nonathlete
weightlifters or bodybuilders to enhance muscle development and strength.
Accordingly, testosterone and other anabolic-androgenic steroids are the main
class of appearance and performance enhancing drugs (APEDs), i.e., substances
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used to improve appearance by building muscle mass or to enhance athletic
performance.

Testosterone and other androgens, mainly at supraphysiological levels, affect
every single body tissue or system, including the cardiovascular system. Testos-
terone increases cardiovascular disease risk, causes myocardial infarction, stroke,
high blood pressure, blood clots, and heart failure. Among the potential mecha-
nisms whereby testosterone affects the cardiovascular system, both indirect and
direct actions have been reported. Indirect actions of testosterone on the cardio-
vascular system include changes in the lipid profile, insulin sensitivity, and
hemostatic mechanisms, modulation of the sympathetic nervous system and
renin-angiotensin-aldosterone system. Direct actions of testosterone in the car-
diovascular system involves activation of proinflammatory and redox processes,
decreased nitric oxide (NO) bioavailability, and stimulation of vasoconstrictor
signaling pathways.

This chapter focuses on the effects of androgens, mainly testosterone, on the
vascular system. The effects of testosterone on endothelial and vascular smooth
muscle cells, as well as mechanisms involved in the effects of testosterone will be
reviewed. Effects of testosterone on the perivascular adipose tissue, the immune,
sympathetic, and renin-angiotensin systems will also be mentioned.
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Abbreviations

AAA Ascending aortic aneurysms
ACh Acetylcholine
Ang II Angiotensin II
APEDs Appearance and performance enhancing drugs
AR Androgen receptor
ARKO AR knockout mice
AT1aR Angiotensin II type 1A receptor
AT2R Angiotensin II type 2 receptor
Bcl-2 B cell leukemia/lymphoma-2
BKCa Large-conductance Ca2+-activated potassium channel
BSA Bovine serum albumin
Ca2+ Calcium ion
CASMCs Coronary artery smooth muscle cells
Cav1.2 L-type voltage-gated Ca2+ channel
CDP Collagenase-digestible protein
CDK Cyclin-dependent kinase
CK Creatine kinase
COX Cyclooxygenase
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CSMC Coronary smooth muscle cell
DHEA-S DHEA sulfate
DHEA Dehydroepiandrosterone
DHT 5α-dihydrotestosterone
ECs Endothelial cells
EDCFs Endothelium-derived contracting factors
EDHF Endothelium-derived hyperpolarizing factor
EDRFs Endothelium-derived relaxing factors
EETs Epoxyeicosatrienoic acids
eNOS Endothelial nitric oxide synthase
ERK1/2 Extracellular signal-regulated kinase 1/2
Gas6 Growth arrest-specific gene 6
GPRC6A GPCR, Class C, group 6, subtype A
H2O2 Hydrogen peroxide
HDL High-density lipoprotein
HMG-CoA 3-hydroxy 3-methylglutaryl coenzyme A reductase enzyme
HUVEC Human umbilical vein endothelial cell
iNOS Inducible nitric oxide synthase
IL-1β Interleukin-1beta
IP3 Inositol trisphosphate
K+ Potassium ion
Kcnn3 Small conductance calcium-activated potassium channel
Kv Voltage-dependent potassium channel
LDL Low-density lipoprotein
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
NAR Normal androgen receptor
NCP Noncollagen protein
NF-κB Nuclear factor-κB
NLRP3 NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome
NO Nitric oxide
Nox1 Subtype 1 NADPH oxidase
Nox4 Subtype 4 NADPH oxidase
ORX Orchiectomized
ORXT ORX treated with testosterone
Ox-LDL Oxidized low-density lipoprotein
PDGF Platelet-derived growth factor
PGE2 Prostaglandin E2

PGF2α Prostaglandin F2 alpha
PGI2 Prostacyclin
PKC Protein kinase C
PTOV1 Prostate overexpressed protein 1
PVAT Perivascular adipose tissue
RASMC Rat aortic smooth muscle cell
ROS Reactive oxygen species
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SBP Systolic blood pressure
SHR Spontaneously hypertensive rat
siRNA Small interfering RNA
SK3 channel Small-conductance calcium-activated potassium channel-3
SMCs Smooth muscle cells
T-BSA Testosterone-3-carboxymethyl oxime conjugated to bovine

serum albumin
TFM Testicular feminized male
THG Tetrahydrogestrinone
TNF-α Tumor necrosis factor-alpha
TP Thromboxane-prostanoid
TxA2 Thromboxane A2

VCAM-1 Vascular adhesion molecule 1
VSM Vascular smooth muscle
VSMCs Vascular smooth muscle cells
WKY Wistar-Kyoto rat

Stating the Problem

Misuses or Non-prescribed Uses of Testosterone and Androgens

According to the National Institute of Health on Drug Abuse, testosterone and other
anabolic-androgenic steroids are appearance and performance enhancing drugs
(APEDs) (National Institute on Drug Abuse; Steroids and Other Appearance and
Performance Enhancing Drugs (APEDs) Research Report).

APEDs are used to improve appearance by building muscle mass or to enhance
athletic performance. Although APEDs do not produce euphory, as other abuse
drugs do, APEDs users may develop a substance use disorder, i.e., they seek
continued use despite adverse consequences or effects (National Institute on Drug
Abuse; Steroids and Other Appearance and Performance Enhancing Drugs (APEDs)
Research Report).

Androgens or anabolic-androgenic steroids represent the main class of APEDs.
Androgens are any natural or synthetic compound that primarily influences the growth
and development of the male reproductive system, including the activity of the
accessory male sex organs and development of male secondary sex characteristics.
Testosterone is the main endogenous active androgen, but other androgens include
androstenedione, 5α-dihydrotestosterone (DHT), dehydroepiandrosterone (DHEA),
and DHEA sulfate (DHEA-S). Synthetic androgens are steroid ester variations of
endogenous androgens, mainly testosterone, and include testosterone cypionate, tes-
tosterone decanoate, undecanoate, enanthate, propionate, heptylate, caproate,
phenylpropionate, isocaproate, and acetate (Tostes et al. 2016). Steroid precursors,
such as tetrahydrogestrinone (THG) and androstenedione, are used to increase testos-
terone levels and are expected to produce similar effects as anabolic steroids. The
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purchase and nonmedical use of these substances varies in different countries, being
very often considered illegal (National Institute on Drug Abuse; Steroids and Other
Appearance and Performance Enhancing Drugs (APEDs) Research Report).

Testosterone and other steroids are mainly used to treat hypogonadism (males
with very low levels or no endogenous testosterone), infertility, erectile dysfunction,
osteoporosis, and anemia. While very low doses are used to treat female androgen
insufficiency-associated symptoms, high doses of testosterone are used in feminizing
hormone therapy or transgender therapy (female-to-male transsexuals). As already
mentioned, androgens are also used by athletes to enhance performance and endur-
ance, which is considered doping, and by nonathlete weightlifters or bodybuilders to
enhance muscle development and strength (Tostes et al. 2016).

Androgens affect mood and behavior, with effects ranging from increased user’s
confidence and strength, to increased aggressiveness. Androgens, mainly at supra-
physiological levels, have many other effects, being associated with testicular and
liver tumors, kidney failure, infections, hormonal unbalance [decreased sperm
production, enlarged breasts, testicular atrophy, and hair loss (in men); voice deep-
ening, decreased breast size, coarse skin, excessive body hair growth, acne, and
male-pattern baldness (in women)], psychiatric disorders (aggression, mania, delu-
sions, depression), and also cardiovascular events or increased cardiovascular dis-
ease risk, with reports of myocardial infarction, stroke, high blood pressure, blood
clots, and heart failure (Bahrke et al. 1992; Urhausen et al. 2004; Santamarina et al.
2008; Palatini et al. 1996; Vanberg and Atar 2010; Bhasin et al. 2001; El Scheich
et al. 2013; Pope et al. 2014; Tostes et al. 2016; Baggish et al. 2017).

Testosterone and the Cardiovascular System

Although both supraphysiological and subphysiological levels of testosterone are
associated with increased cardiovascular risk, the effects of supraphysiological
levels of testosterone have been surprisingly little studied. Several reports indicate
that supraphysiological levels of testosterone affect the function and structure of the
cardiovascular system.

Among the potential mechanisms whereby testosterone affects the cardiovascular
system, both indirect and direct actions have been reported. Indirect actions of
testosterone on the cardiovascular system include changes in the lipid profile
[increasing low-density lipoprotein (LDL) levels and decreasing high-density lipo-
protein (HDL) levels], insulin sensitivity, and hemostatic mechanisms, modulation
of the sympathetic nervous system and renin-angiotensin-aldosterone system. Direct
actions of testosterone in the cardiovascular system involves activation of pro-
inflammatory and redox processes, decreased nitric oxide (NO) bioavailability, and
stimulation of vasoconstrictor signaling pathways (Bahrke et al. 1992; Farhat et al.
1995; Hutchison et al. 1997; Bhasin et al. 2001; Urhausen et al. 2004; Palatini et al.
1996; Santamarina et al. 2008; Vanberg and Atar 2010; El Scheich et al. 2013;
Herring et al. 2013; Pope et al. 2014; Tostes et al. 2016; Baggish et al. 2017).
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Testosterone affects many cardiac functions and consequently myocardial per-
formance. Testosterone affects calcium (Ca2+) homeostasis, expression of alpha and
beta adrenergic receptors, inotropic, chronotropic, and dromotropic responses,
growth and hypertrophic responses, as recently reviewed (Pirompol et al. 2016; De
Smet et al. 2017; Elagizi et al. 2018; Ribeiro Júnior et al. 2018; Bianchi 2018;
Carbajal-García et al. 2020).

Testosterone also affects the vasculature by interfering with mechanisms that
control vascular function (relaxation and contraction) and structure (plasticity,
growth, and remodeling). Vascular function is mainly determined by factors released
from nerve terminals (norepinephrine from the sympathetic nervous system), endo-
thelial cells (ECs), cells from the perivascular adipose tissue (PVAT), from resident
and infiltrated immune cells (cytokines and chemokines), blood cells (eosinophils,
platelets), and by the intrinsic components of the vascular smooth muscle cells
(VSMCs, ion channels, receptors, enzymes, protein exchangers, and structural
proteins).

Here we focus on the effects of androgens, mainly testosterone, on the vascular
system. The effects of testosterone on ECs and VSMCs will be discussed. Testos-
terone effects in the PVAT and other mechanisms that control vascular function will
also be addressed. The mechanisms involved in the effects of testosterone in these
cells and tissues will be reviewed (Fig. 1).

Vascular Effects of Testosterone

Impact of Testosterone on Endothelial Cells

The vascular endothelium is a monolayer of cells between the blood vessel lumen
and VSMCs. Vascular ECs, a key cellular component of blood vessels, play impor-
tant roles in vascular health and disease (Vanhoutte et al. 2017). Endothelial cells
contain functional androgen receptor (AR) and are targets for androgens’ action. As
will be discussed, some androgen’s effects rely on AR activation, while others occur
independently of AR-molecular pathways (Nheu et al. 2011).

Since deprivation of androgen is associated with enhanced endothelium-
dependent dilatation in adult men (Herman et al. 1997), it is expected that high
androgen levels affect endothelial function. Indeed, testosterone affects the ECs by
interfering with many signaling pathways. Testosterone enhances apoptosis induced
by tumor necrosis factor-α (TNF-α) in cultured human ECs (Ling et al. 2002).
Testosterone has been reported to either stimulate (McCrohon et al. 1999; Zhang
et al. 2002) or inhibit (Mukherjee et al. 2002) expression of vascular adhesion
molecule 1 (VCAM-1) through AR-mediated and AR-independent mechanisms.
5α-Dihydrotestosterone (DHT) increases expression of VCAM-1 in an
AR-mediated manner and via a nuclear factor-κB (NF-κB)-dependent mechanism
in human ECs (McCrohon et al. 1999; Death et al. 2004).

Testosterone influences the release and actions of endothelium-derived factors,
including endothelium-derived relaxing factors (EDRFs) and endothelium-derived
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contracting factors (EDCFs) (Farhat et al. 1995; Hutchison et al. 1997; Kumar et al.
2018). Testosterone impairs endothelium-dependent vasodilation through inhibition
of the generation or signaling of EDRFs, including NO (Mäkinen et al. 2011),
prostacyclin (PGI2) (Nakao et al. 1981), and endothelium-derived hyperpolarizing
factor (EDHF) (Gonzales et al. 2004).

Chinnathambi et al. (2013a, 2014a) found that elevated testosterone impaired
acetylcholine (ACh)-, but not sodium nitroprusside (an exogenous NO donor)-
induced relaxation in mesenteric and uterine arteries of rats, reinforcing that elevated

Fig. 1 Mechanisms whereby testosterone impacts vascular function. Vascular function is
mainly determined by factors released by nerve terminals (norepinephrine from the sympathetic
nervous system), endothelial cells, the perivascular adipose tissue, resident and infiltrated innate and
adaptive immune cells (cytokines and chemokines), blood cells (histamine from mast cells; TXA2

and serotonin from platelets), and by the intrinsic components of the vascular smooth muscle cells
(ion channels, receptors, and structural and exchanger proteins). Testosterone affects the vasculature
by interfering with all mechanisms that control vascular function. In the endothelium, testosterone
modulates NO, COX-derived metabolites and EDHF release and signaling; in VSMCs, testosterone
modulates ROS generation, expression, and activity of receptors and ion channels. AR: androgen
receptor; ARE: androgen response element; TNF-α: tumor necrosis factor-alpha; NO: nitric
oxide; eNOS: endothelial NO synthase; COX: cyclooxygenase; ROS: reactive oxygen
species; NOX: NADPH oxidase; AT1 receptor: angiotensin II type-1 receptor; AT2 receptor:
angiotensin II type-2 receptor; TP receptor: thromboxane-prostanoid receptors; TXA2: thrombox-
ane A2; NLRP3: NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome; EDHF:
endothelium-derived hyperpolarizing factor; K+: potassium ion; Ca2+: calcium ion; Th1: T helper
(Th) immune cells type 1; Th2: T helper (Th) immune cells type 2; VSMCs: vascular smooth
muscle cells; PVAT: perivascular adipose tissue. “Created with BioRender.com”
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testosterone impairs endothelium-dependent relaxation. Specifically, decreased
NO-mediated relaxations were reported in mesenteric and uterine arteries in a
pregnant rat model with elevated testosterone (Chinnathambi et al. 2013a, 2014a).
Testosterone-induced impairment of endothelium-dependent relaxations are due to
decreased NO synthesis and release. In rats, testosterone reduces plasma levels of
NO metabolites, a marker of NO bioavailability; it reduces endothelial NO synthase
(eNOS) protein expression in uterine arteries (Chinnathambi et al. 2014a) and eNOS
activity (increased phosphorylation at inhibitory Thr495 site and reduced phosphor-
ylation at excitatory Ser1177 site) in mesenteric arteries (Chinnathambi et al. 2013a).

EDHF activity is represented by different substances in different vascular beds
and different species (Campbell and Falck 2007). Moreover, gap junctions between
ECs and VSMCs contribute to spread EDHF response along the vascular wall
(Chaytor et al. 2001; Griffith 2004). Various substances have been proposed as
mediators of EDHF activity, including potassium ion (K+), C-type natriuretic pep-
tide, hydrogen peroxide (H2O2), epoxyeicosatrienoic acids (EETs), and anandamide
(Félétou and Vanhoutte 2006, 2009). Chinnathambi et al. (2014a) found that in
addition to reduced eNOS protein, decreased mRNA expression of small-
conductance Ca2+-activated potassium channel-3 (SK3), which is a major source
of EDHF-dependent hyperpolarization (Busse et al. 2002), occurs in uterine arteries
of testosterone-treated rats. Impaired ACh-induced EDHF-mediated relaxation is
also observed in these arteries. Female rats treated with DHT (7.5 mg, 90-day
release) exhibit increased blood pressure and decreased EDHF-mediated relaxation
in mesenteric arteries, an event associated with decreased connexin 43 expression
(Mishra et al. 2017).

It is well established that hypertension has developmental origins, with exposure
to adverse insults during the prenatal period causing the development of endothelial
dysfunction and elevated blood pressure during adult life (Ligi et al. 2010). Prenatal
exposure to elevated testosterone levels induces adult life hypertension associated
with specifically impairment in EDHF-mediated relaxation in mesenteric arteries
(Chinnathambi et al. 2013b; More et al. 2015). More et al. (2015) found that EDHF-
type relaxation in testosterone-exposed offspring is decreased compared to that in
controls, and it is improved by enalapril (an inhibitor of angiotensin converting
enzyme) treatment. While Kcnn4 channel expression and function are similar
between control and testosterone rats, and it is not affected by enalapril treatment,
Kcnn3-mediated relaxation is impaired in testosterone offspring, and it is normalized
by enalapril treatment. In addition, enalapril treatment restores expression of Kcnn3
channels.

Cyclooxygenase (COX)-derived prostanoids play an important role in the regula-
tion of vascular tone and ECs are an important source of COX-derived metabolites
(Félétou et al. 2011; Matsumoto et al. 2015; Imig 2020). Testosterone has been shown
to modulate prostanoids signaling and responses. Testosterone increases the density of
thromboxane-prostanoid (TP) receptors in platelets (Matsuda et al. 1994; Ajayi et al.
1995) and cultured rat aorta and canine coronary artery VSMCs (Matsuda et al. 1995;
Higashiura et al. 1997). In aorta, coronary, and renal arteries, thromboxane mimetic
U46619-induced contraction is increased by testosterone (Matsuda et al. 1994; Schrör
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et al. 1994; Higashiura et al. 1996; Karanian and Ramwell 1996). TP receptors in
vessels from males are more susceptible to testosterone modulation than those in
female vessels (Matsuda et al. 1995; Karanian and Ramwell 1996; Higashiura et al.
1997). In rat cerebral arteries, chronic testosterone treatment enhances thromboxane
A2 (TxA2)-mediated tone due to increased endothelial TxA2 synthesis without
changes in TP receptors-mediated contraction (Gonzales et al. 2005).

Increased testosterone alters uterine artery adaptations during pregnancy
(Chinnathambi et al. 2014a, b). Thromboxane mimetic (U46619), phenylephrine,
and angiotensin II (Ang II)-induced contractions are greater in endothelium-intact
uterine arteries of testosterone-treated Sprague-Dawley rats (testosterone propionate;
0.5 mg/kg/day from gestation day 15 to 19) than in uterine arteries of controls
(Chinnathambi et al. 2014a). Of note, enhancement of contractions induced by
U46619 and phenylephrine by endothelial denudation is greater in controls than in
testosterone-treated rats suggesting that the enhanced U46619- and phenylephrine-
induced contractions of uterine arteries in testosterone-treated rats are mainly due to
impaired endothelial function rather than increased U46619- and phenylephrine-
induced contractions per se (Chinnathambi et al. 2014a). Indeed, EDRFs-mediated
relaxations are impaired in uterine arteries of testosterone-treated rats. In contrast,
treatment with testosterone augments Ang II-induced contractions in arteries with
and without endothelium, suggesting that testosterone enhances arterial sensitivity to
Ang II in VSMCs (Chinnathambi et al. 2014a), as will be discussed in the next
section (Impact of testosterone on VSMCs).

For a summary of the impact of testosterone on vascular ECs, please refer to
Table 1.

Impact of Testosterone on Vascular Smooth Muscle Cells

Not only ECs but also VSMCs contain functional AR and are targets for androgens
actions. Biological activities of androgens in VSMCs are predominantly mediated
through the AR, but many AR-independent effects also exist. AR-mediated effects
involve transcriptional control of target genes while AR-independent effects usually
involve androgens activation of multiple signaling pathways.

The effects of testosterone on all aspects of VSMCs function (tone, ion
channels expression and activity, growth, and apoptosis) are also disputed and
remains controversial (Barton et al. 2012; Campelo et al. 2012; Chignalia et al.
2012). However, whereas physiological levels of androgens and AR activation
have been associated with both protective and deleterious effects on VSMCs
function and remodeling, supraphysiological levels of androgens are practically
always linked to vascular smooth muscle stress and harmful effects. Antagonic
actions of testosterone and other androgens in the vascular smooth muscle may
be related to local metabolism of testosterone by 5alpha-reductase type 2 and
aromatase, enzymes responsible for conversion of testosterone into DHT and
17beta-estradiol, respectively, generating androgenic and estrogenic influences
on blood vessels.
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Table 1 Signaling pathways modulated by testosterone in endothelial cells

Endothelial cells

Androgen Animal/tissue
Molecular
target

Impact on vascular
function Reference

Testosterone Human
intralobar
pulmonary
arteries

(+) Vasodilation
(low concentration)

Rowell et al.
2009

(+) Vasoconstriction
(high concentration)

Low levels of
testosterone

Men
(40–69 years)
with
andropausal
symptoms

# Endothelium-
dependent brachial
artery flow-mediated
dilatation

Mäkinen et al.
2011

Testosterone Rat middle
cerebral arteries

# EDHF # Endothelium-
dependent relaxation

Gonzales et al.
2004

Testosterone Rat mesenteric
arteries

# eNOS activity
(" phosphor-
Thr495 and #
phosphor-
Ser1177)

# Endothelium-
dependent and
NO-mediated
relaxation

Chinnathambi
et al. 2013a,
2014a

Testosterone Uterine arteries
of testosterone-
treated rats

# mRNA SK3
channel

# EDHF vasodilation Chinnathambi
et al. 2014a

DHT Female rats
treated with
DHT

# Blood
pressure

# EDHF-mediated
relaxation of
mesenteric arteries

Mishra et al.
2017

# Connexin
43 expression
in mesenteric
arteries

Testosterone Prenatal
exposure to
elevated
testosterone

# Kcnn3-
mediated
relaxation

Hypertension in adult
life

Chinnathambi
et al. 2013b

# EDHF-mediated
relaxation in
mesenteric arteries

More et al.
2015

Testosterone
cypionate

Healthy men " TxA2 receptor " Platelet aggregation Ajayi et al.
1995

Testosterone
cypionate

Male rats " TxA2 receptor
density in
platelets and in
aortic
membranes

" Aortic contractile
response to the TxA2

mimetic, U-46619

Matsuda et al.
1994

DHT Cultured male
RASMC

" TxA2 receptor
density

Matsuda et al.
1995

Testosterone
and DHT

Cultured
RASMC and
guinea pig
CASMCs

" TxA2 receptor
density

Higashiura
et al. 1997

" TP receptors

(continued)
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Table 1 (continued)

Endothelial cells

Androgen Animal/tissue
Molecular
target

Impact on vascular
function Reference

Antiandrogens
flutamide or
cyproterone
acetate

Left anterior
descending
coronary artery,
left circumflex
coronary artery,
and renal artery
and vein of
sexually mature
dogs

Resulted in an
increase in both
the maximum

# Contractile
response to the TxA2-
mimetic

Karanian and
Ramwell 1996

Pretreatment of
female dogs
with
testosterone

" Contractile
response to U46619

Testosterone Isolated and
perfused heart
from male
Guinea pigs

" U46619-induced
pressor responses
(contraction of
coronary arteries)

Schrör et al.
1994

Testosterone Cerebral
arteries from
rats on chronic
testosterone
treatment

" Endothelial
TxA2 synthesis

" TxA2-mediated
tone no changes in
TP receptors-
mediated contraction

Gonzales et al.
2005

Testosterone
propionate

Endothelium-
intact uterine
arteries from
testosterone-
treated
Sprague-
Dawley rats

" U46619,
phenylephrine, and
Ang II-induced
contractions

Chinnathambi
et al. 2014a

Causes endothelial
dysfunction

Androgen
deprivation
(bilateral
orchidectomy
and/or maximal
androgen
blockade for
>6 months)

Adult men
(40–70 years)
under treatment
of prostate
cancer

" Endothelium-
dependent dilatation

Herman et al.
1997

Testosterone HUVEC
stimulated with
TNF-α

" VCAM-1 and
E-selectin expression

Zhang et al.
2002

# VCAM-1
expression
(by testosterone
conversion to

Mukherjee
et al. 2002
estradiol by
aromatase)

DHT HUVEC (+) Androgen
receptor/NF-κB

" VCAM-1
expression

McCrohon
et al. 1999

# Human monocyte
adhesion to human
ECs

Death et al.
2004

(continued)
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Testosterone has major effects on vascular tone. Testosterone alters vascular tone
through endothelium-dependent, as already discussed, and by endothelium-
independent mechanisms. Testosterone affects many types of smooth muscle ion
conductance channels, including K+ and Ca2+ channels (Bowles et al. 2004; Jones
et al. 2004; Scragg et al. 2004), receptors (angiotensin type 1 and type 2 receptors,
adrenergic receptors, TP receptors), activity of enzymes including tyrosine kinase
and NADPH oxidase, and redox system. For a summary of the impact of testosterone
on vascular VSMCs, please refer to Table 2.

Expression of Ang II type 1b (AT 1b) receptor is increased, whereas Ang II type
2 (AT2) receptor is reduced in testosterone-exposed arteries (Chinnathambi et al.
2014a). In adult male growth-restricted offspring, testosterone augments Ang
II-mediated pressor responses (Ojeda et al. 2010). Moreover, contractile response to
Ang II, but not to potassium chloride or phenylephrine, is increased in mesenteric
arteries of testosterone-treated rats and increased maternal testosterone upregulates
mesenteric vascular Agtr1b mRNA transcripts linked to an increase in blood pressure
(Chinnathambi et al. 2014b). In general, AT2 receptors are known to oppose AT1
receptor-mediated responses, evoking vasorelaxation, natriuresis, antigrowth, and anti-
inflammatory effects (Verdonk et al. 2012). Testosterone downregulates AT2 receptor
through androgen receptor-mediated extracellular signal-regulated kinase 1/2 (ERK1/
2) signaling pathway in rat aorta (Mishra et al. 2016). Therefore, it is likely that the
effect of testosterone on vascular smooth muscle contraction is agonist specific.

Proliferation and migration of VSMCs are key events in many pathological condi-
tions such as hypertension, atherosclerosis, and restenosis (Ross 1999; Casscells 1992;
Touyz et al. 2018). Testosterone and DHTstimulate proliferation of VSMCs through an
AR-mediated mechanism (Fujimoto et al. 1994; Williams et al. 2002; Liu et al. 2003).
In addition, testosterone exerts a mitogenic action in mammary artery smooth muscle
cells (SMCs) by AR-independent mechanisms (Nheu et al. 2011). The involvement of
a membrane-located AR, such as G protein-coupled receptor GPRC6A (GPCR,
Class C, group 6, subtype A) (Pi et al. 2010; Cruz-Topete et al. 2020), in the control
of VSMCs growth is likely since cell-impermeable bovine serum albumin (BSA)-
linked testosterone has a growth effect in human vascular cells (Somjen et al. 2004).

Table 1 (continued)

Endothelial cells

Androgen Animal/tissue
Molecular
target

Impact on vascular
function Reference

Testosterone HUVEC
(EA.hy926) in
culture

# Bcl-2
expression

" Cells in the early
and late stages of
apoptosis

Ling et al.
2002

Abbreviations: Ang II: angiotensin II; Bcl-2: B cell leukemia/lymphoma-2 protein; Ca2+: calcium;
CASMCs: coronary artery smooth muscle cells; DHT: 5α-dihydrotestosterone; EDHF: endothelium-
derived hyperpolarizing factor; eNOS: endothelial nitric oxide synthase; HUVEC: human umbilical
vein endothelial cell; Kcnn3: small conductance calcium-activated potassium channels; NF-κB:
nuclear factor-κB; NO: nitric oxide; RASMC: rat aortic smooth muscle cell; SK3 channel: small-
conductance calcium-activated potassium channel-3; TNF-α: tumor necrosis factor-alpha; TP:
thromboxane-prostanoid; TxA2: thromboxane A2; VCAM-1: vascular adhesion molecule 1
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The detailed mechanisms underlying testosterone-induced VSMCs proliferation
remain largely unknown. Using microarray and quantitative RT-PCR analyses,
Nakamura et al. (2006) demonstrated that testosterone markedly induces the
human prostate overexpressed protein 1 (PTOV1), which stimulates cell prolifera-
tion (Benedit et al. 2001) in VSMCs. Moreover, small interfering RNA (siRNA)
analysis demonstrated that PTOV1 is involved in AR-mediated VSMCs prolifera-
tion. In human aorta obtained at autopsy, PTOV1, as well as AR, detected in the
nuclei of neointimal VSMCs was abundant in relatively young male aorta at an early
stage of atherosclerosis (Nakamura et al. 2006). Therefore, PTOV1 is considered to
be one of the testosterone-induced genes associated with AR-mediated stimulation
of VSMCs proliferation in the aortic neointima and may play key roles in androgen-
related atherogenesis in the male human aorta.

Chignalia et al. (2012) demonstrated that testosterone affects VSMCs redox status
and migration via genomic and nongenomic mechanisms, activating cellular events
that may further aggravate hypertension-associated vascular dysfunction. Testosterone
enhances reactive oxygen species (ROS) production in VSMCs from Wistar-Kyoto rat
(WKY) and spontaneously hypertensive rat (SHR). In SHR, ROS production occurs at
short- and long-term periods. Testosterone increases the expression of NADPH oxidase
subunits (Nox1 and Nox4) in WKYand SHRVSMCs. However, testosterone activates
the nonreceptor tyrosine kinase c-Src with a similar time course for ROS formation
only in SHRs. Thus, testosterone has a pivotal role in hypertension-associated pro-
cesses, including vascular oxidative stress, activation of redox-sensitive pathways, and
VSMCs migration and c-Src activation has a fundamental role in these effects.

Apoptosis deregulation is considered a pathogenic process in various diseases and
is an important mechanism underlying the alterations seen in atherosclerosis, hyper-
tension, and inflammation (Montezano and Touyz 2012). Testosterone has both pro-
and antiapoptotic effects in different tissues/cells. In pig coronary VSMCs, testoster-
one treatment increases caspase-3 activity, an effect suppressed by protein kinase C
(PKC)-δ siRNA (Bowles et al. 2007). Moreover, Lopes et al. (2014) demonstrated that
testosterone induces apoptosis in VSMCs through the extrinsic apoptotic pathway
with the involvement of AR activation and mitochondria-generated ROS. Testosterone
may exert opposite effects on ROS generation and apoptosis, depending not only on
the cell type but also on the cell functional status (Tostes et al. 2016). The complexity
of testosterone effects is evident, and further studies are required for a better under-
standing of the pro- or anti-oxidative/apoptotic effects of testosterone, especially in the
cardiovascular system.

For a summary of the impact of testosterone on VSMCs, please refer to Table 2.

Impact of Testosterone on the Perivascular Adipose Tissue Other
Mechanisms That Control Vascular Function

Until recently, the adipose tissue was considered as only being involved in total body
lipid and energy homeostasis. However, nowadays it is well known that adipose
tissue also exerts major endocrine and paracrine effects via the release of various
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inflammatory adipokines and other factors that affect vascular tone (Maenhaut and
Van de Voorde 2011).

Initial studies suggested no effects of testosterone on the PVAT. Orchidectomy
did not modify the anticontractile effects of PVAT of thoracic aorta male Swiss mice
(Boydens et al. 2016). This study observed that 4 weeks of testosterone depletion by
orchidectomy does not affect the protective effect of PVAT (Boydens et al. 2016).
Since PVAT function changes in different stages of diseases, further investigation
with time-course studies of PVAT’s function in testosterone-depletion conditions are
warranted. Testosterone injection reduces adiponectin levels in rodents (Nishizawa
et al. 2002) and hypogonadal men have increased adiponectin levels compared with
eugonadal subjects, which is decreased by testosterone replacement therapy
(Lanfranco et al. 2004). These observations strongly suggest that testosterone
impacts PVAT-derived adipokines, and further research may clarify the relationship
among PVAT, testosterone, and vascular tone.

Although detailed molecular mechanisms underlying vascular dysfunction
induced by supraphysiological testosterone remain unclear, inflammatory- or
immune system-related events are also modulated by sex hormones, including
testosterone (Roved et al. 2017; Shepherd et al. 2021).

Under physiological conditions, testosterone has direct effects on immune cells’
function and in their inflammatory capacity (Shepherd et al. 2021). Testosterone is
generally immunosuppressive while estrogen tends to enhance immune responses.
Testosterone modulates immune cells activity, suppressing type 2 responses, i.e.,
responses mediated by Th2 cells, and increasing type 1 responses or Th1 cell-
mediated responses (Roved et al. 2017).

Testosterone induces leucocyte migration through NADPH oxidase and COX-2
dependent mechanisms (Chignalia et al. 2015). Alves et al. (2020) recently demon-
strated a link among supraphysiological testosterone levels, mitochondrial ROS
generation, and NLRP3 inflammasome activation on vascular function. In vitro
studies using thoracic aortic rings and in vivo protocols with wild-type and
NLRP3 knockout mice demonstrated that testosterone activates the NLRP3
inflammasome in vascular cells, leading to vascular dysfunction, i.e., increased
contractions induced by phenylephrine and decreased ACh-induced relaxation
(Alves et al. 2020). Vascular dysfunction induced by testosterone involves NLRP3
inflammasome activation and oxidative stress, since testosterone-mediated vascular
dysfunction is prevented by pharmacological inhibition of NLRP3 inflammasome,
AR, and ROS generation (Alves et al. 2020). Testosterone also augments the
expression of vascular markers of cellular inflammation, including COX-2 and
inducible nitric oxide synthase (iNOS), and worsens cerebrovascular inflammation
after intraperitoneal lipopolysaccharide (LPS) injection (Razmara et al. 2005). Since
innate and adaptive immunity lead to vascular injury and are central in the patho-
physiology of hypertension, heart failure, and other cardiovascular diseases, over-
activation of the immune system may be central in the effects of supraphysiological
levels of testosterone.

Increased sympathetic activity and autonomic imbalance are features in many
cardiovascular diseases (Yoo and Fu 2020). Autonomic imbalance increases
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peripheral vascular resistance, heart rate, and blood pressure. Increased sympathetic
activity is also observed in healthy young men using androgens (Alves et al. 2010;
dos Santos et al. 2013; Porello et al. 2018).

Testosterone also modulates norepinephrine levels and the activity of enzymes
that control norepinephrine synthesis, i.e., tyrosine hydroxylase and dopamine-beta-
hydroxylase. While castration decreases norepinephrine content and tyrosine
hydroxylase activity, treatment of castrated animals with testosterone increases
norepinephrine content and tyrosine hydroxylase and dopamine-beta-hydroxylase
activity, suggesting that norepinephrine levels are under androgenic control
(Müntzing 1971; Rastogi et al. 1977; Bustamante et al. 1989; Kumai et al. 1994).

Androgens increase vascular resistance and blood pressure in humans. In addi-
tion, increased resting muscle sympathetic nerve activity and lower forearm blood
flow are observed in young men who use anabolic androgenic steroids. Androgens’
users also exhibit increased heart rate during strength training and increased muscle
sympathetic nerve activity and lower forearm blood flow in response to mental
stress, indicating that androgens exacerbate neurovascular control throughout stress
reactions (Alves et al. 2010; Porello et al. 2018). The increased blood pressure and
augmented sympathetic outflow in androgens’ users may increase cardiovascular
disease risk in humans.

Applications to Other Areas of Public Health

Testosterone abuse, which has become increasingly popular in the last decades, may
impose a substantial public health burden by increasing cardiovascular disease risk.
Cardiovascular disease results in significant medical cost (for the individuals, private
and government insurers, and other payers). Testosterone-induced cardiovascular
disease (myocardial infarction, stroke, high blood pressure, blood clots, and heart
failure – events reported with testosterone abuse) directly impact the individual
quality of life.

Studies specifically addressing the cost burden imposed by consequences of
testosterone abuse are scarce. However, since testosterone abuse is a potentially
modifiable risk factor for cardiovascular disease, it may be responsible for substan-
tial financial burden on the health care system and quality-of-life.

Key Facts of Testosterone

• Testosterone regulates many processes in the male and in the female body.
• Testosterone is used in clinical conditions (testosterone replacement therapy) and

also in nonmedical conditions.
• Testosterone can carry cardiovascular effects and risks.
• Testosterone affects the vasculature by directly impacting endothelial and vascu-

lar smooth cells.
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• Testosterone also changes vascular function by activating other systems (sympa-
thetic, immune, renin-angiotensin).

Mini-Dictionary of Terms

Appearance and performance enhancing drugs (APEDs) are drugs used to
improve appearance by building muscle mass or to enhance athletic performance.

Androgen is any natural or synthetic compound that primarily influences the
growth and development of the male reproductive system, including the activity of
the accessory male sex organs and development of male secondary sex characteristics.

Summary Points

• Testosterone, the main endogenous active androgen, is used to treat many clinical
conditions.

• Testosterone and other androgens are also used by athletes, nonathlete
weightlifters or bodybuilders to enhance muscle development, strength, and
performance and endurance.

• Testosterone at supraphysiological levels increases cardiovascular disease risk,
causes myocardial infarction, stroke, high blood pressure, blood clots, and heart
failure.

• Testosterone affects the cardiovascular system by changing lipid profile, insulin
sensitivity, hemostatic mechanisms, sympathetic nervous system, and renin-
angiotensin-aldosterone system.

• Testosterone activates proinflammatory and redox processes, decreases nitric
oxide bioavailability, and stimulates vasoconstrictor signaling pathways.

• Testosterone affects the vasculature by interfering with all mechanisms that
control vascular function.

• In the endothelium, testosterone modulates NO, COX-derived metabolites and
EDHF release and signaling.

• In VSMCs, testosterone modulates ROS generation, expression, and activity of
receptors and ion channels.
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