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Abstract
Purpose of Review Decades of research on nutrition and exercise on athletes and bodybuilders has yielded various strategies to
promote anabolism and improve muscle health and growth. We reviewed these interventions in the context of muscle loss in
critically ill patients.
Recent Findings For critically ill patients, ensuring optimum protein intake is important, potentially using a whey-containing
source and supplemented with vitamin D and leucine. Agents like hydroxyl β-methylbutyrate and creatine can be used to
promote muscle synthesis. Polyunsaturated fatty acids stimulate muscle production as well as have anti-inflammatory properties
that may be useful in critical illness. Adjuncts like oxandralone promote anabolism. Resistance training has shown mixed results
in the ICU setting but needs to be explored further with specific outcomes.
Summary Critically ill patients suffer from severe proteolysis during hospitalization as well as persistent inflammation, immu-
nosuppression, and catabolism syndrome after discharge. High protein supplementation, ergogenic aids, anti-inflammatories, and
anabolic adjuncts have shown potential in alleviating muscle loss and should be used in intensive care units to optimize patient
recovery.
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Introduction

Managing nutrition in patients in the critical care setting is
imperative to prevent catabolism and muscle loss associated
with hospitalization. During hospitalization in the intensive
care unit (ICU), patients suffer from acute severe proteolysis
and muscle loss as well as disuse atrophy, with loss of nearly
20% of quadriceps femoris muscle mass within 10 days of
ICU stay [1]. It is known that muscle loss is associated with

a prolonged period of recovery and a decline in metabolic
health [2]. ICU patients are also at risk for developing neuro-
muscular syndromes like critical illness poly-neuropathy and
myopathy (CIPNM), which is another component of ICU-
acquired weakness [3, 4]. Post-hospitalization, patients can
also suffer from persistent inflammation, immunosuppression,
and catabolism syndrome (PICS), which refers to prolonged
low-grade inflammation and catabolism with resultant loss of
lean body mass [5••]. Inflammation-induced cachexia de-
velops secondary to an inappropriate interplay between cyto-
kines, neuropeptides, stress hormones, and intermediary sub-
strate metabolism [6]. This is similar to “inflammaging”—
chronic low-grade inflammation associated with aging that
contributes to the development of sarcopenia [7]. Guidelines
by multiple societies recommend that all patients staying for
more than 24–48 h in the ICU should be considered at risk for
malnutrition, and early enteral nutrition should be encouraged
in these patients [8, 9••]. Adequate nutrition in critically ill
patients requiring prolonged mechanical ventilation has been
shown to improve survival time and physical recovery at
3 months post-hospitalization [10]. However, cachexia and
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muscle loss from PICS persist despite currently recommended
intensive care unit (ICU) nutrition support. The inflammation-
induced cachexia in PICS is analogous to that of patients with
cancer, major burns, and sarcopenia and may benefit from
similar interventions. High protein intake and anti-
inflammatories along with anabolic interventions and nutri-
tional rehabilitation are some measures that have been pro-
posed to manage PICS [5••, 11, 12].

Ergogenic supplements are nutritional aids that improve
exercise performance capacity or enhance training adapta-
tions. These supplements have been long tested and trialed
in athletes and bodybuilders, and retail sales for the same
exceeded USD 5 billion in 2016, with a 6.7% growth in sales
in 2018 [13]. Ergogenic aids are divided into supplements that
improve muscle health and growth and performance en-
hancers. The International Society of Sports Nutrition
(ISSN) has classified these into three categories based on the
available evidence, as those with strong evidence to support
efficacy with apparent safety, limited or mixed evidence to
support efficacy, and little to no evidence to support efficacy
and/or safety [14]. There are very few studies involving these
supplements to benefit ICU patients to prevent catabolism
[15]. We have reviewed ergogenic aids that improve muscle
health which have been studied in athletes and bodybuilders
and described their significance and possible utility in manag-
ing cachexia in the critical care setting.

High Protein Intake

Catabolic critical illness increases protein requirements by in-
creasing obligatory protein loss and decreasing protein syn-
thesis secondary to decreased efficiency of exogenous amino
acid deposition into endogenous proteins [16]. A prospective
study showed that when both protein and energy targets were
reached in mechanically ventilated ICU patients, there was a
50% reduction in 28-day mortality, whereas only reaching
energy targets was not associated with a reduction in mortality
[17]. Adult medical ICU patients with higher daily protein
intake during hospitalization have improved mortality at
3 months post-hospitalization (17% lower mortality for each
1 g/kg increase in daily protein delivery) [18•]. The recom-
mendation for protein requirement for normal or hospitalized
adults with normal metabolism is 0.8 g/kg/day [19]. Current
American Society for Parenteral and Enteral Nutrition
(ASPEN)/Society of Critical Care Medicine (SCCM) guide-
lines recommend protein requirements of 1.2–2.0 g/kg of ideal
body weight per day for all ICU patients, with 2.0 g/kg/day as
the minimum amount to provide to patients with severe burns
and polytrauma and 2.5 g/kg/day as the minimum amount to
provide to critically ill, permissively underfed morbidly obese
patients [9••]. European Society for Clinical Nutrition and
Metabolism (ESPEN) guidelines recommend 1.3 g/kg of ideal
body weight per day for ICU patients [8, 9••]. A systematic

review showed that nitrogen balance improves with increasing
protein provision to an upper limit of 2.5 g/kg/day, which
could be considered as a safe upper limit of protein require-
ment in critically ill patients [20]. It has been observed that
many strength-training athletes consume even as much as
4 g/kg/day protein without reported adverse effects, and as
much as 8 g/kg/day has been given for short periods without
adverse effects [21]. Unfortunately, most ICU patients receive
less than half of the most common current recommendation,
1.5 g/kg/day, for the first week or longer of their hospitaliza-
tion [22]. A review of available data strongly shows that most
ICU patients are provided calorie-rich, protein-deficient sup-
plemental nutrition, when in fact they are protein-starved and
overweight [16]. Going by current evidence, adequate protein
intake in critical illness strongly improves clinical outcomes.
Recently, the PROTINVENT study showed increased mortal-
ity in patients treated with high-dose proteins in the first
3 days, although patients with an overall low protein intake
(0.8 g/kg/day) had the highest mortality risk [23].
Optimization of enteral nutrition to better accommodate a high
ratio of protein to nonprotein calories may be the answer to
meeting the protein targets without overfeeding. A recent trial
showed that using a very high intact-protein formula (8 g/
100 kcal) in overweight patients resulted in higher protein
intake and plasma amino acid concentrations than an isocalo-
ric standard high protein formula (5 g/100 kcal), without an
increase in energy intake [24]. Other options to meet protein
targets are using enteral protein supplements or supplemental
amino acid solutions. Further well-conducted studies are
needed to evaluate protein intake, timing, and route of admin-
istration in the ICU.

Whey

Whey protein is a dairy by-product and one of the most used
supplements by athletes and sports nutrition product con-
sumers. It has been found to be the “gold standard” protein
in promoting myofibrillar protein synthesis (MPS), and this
has been attributed to the high proportion of leucine along
with rapid digestibility and high bioavailability within the
plasma and muscle tissue [25, 26]. Whey protein has been
shown to improve nutritional status and immunity in cancer
patients and has been deemed a practical and cost-effective
approach to cancer cachexia [27, 28]. Multiple trials including
the PROVIDE study have shown that vitamin D and leucine-
enriched whey protein resulted in improvements in muscle
mass and also attenuated chronic low-grade inflammation in
elders with sarcopenia [29–31]. A high whey protein and vi-
tamin D-enriched supplement may be protective against
sarcopenia, as it preserved muscle mass in obese older adults
during a hypocaloric diet and resistance exercise program
[32]. Similarly, adding a vitamin D and leucine-enriched
whey protein supplement stimulated postprandial muscle
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protein synthesis and increased muscle mass in healthy older
adults and may serve as a mode for muscle preservation [33•].
It has also been demonstrated that leucine-rich whey protein
have superior anabolic effects on muscle protein kinetics after
fasting and can be beneficial during fasting-induced catabolic
conditions [34]. Whey protein is widely available and afford-
able, with a relatively good safety profile. Using whey protein
to combat muscle loss and chronic inflammation may be ben-
eficial in critical illness during catabolism and in ICU patients
post-hospitalization, particularly those at risk of sarcopenia.

Branched-Chain Amino Acids (BCAA) Including
Leucine

Essential amino acids (EAA) are the building blocks of mus-
cle and play an important role in MPS. Among the EAA, the
BCAAs (leucine, isoleucine, and valine) have been found to
be the most important [35]. BCAAs have been demonstrated
to contribute to the formation of glutamine and alanine in the
muscle, increase MPS synthesis rates in resistance-trained
men, and attenuate exercise-induced muscle damage [36, 37].

Leucine is the most important branched-chain EAA and a
key component of muscle protein. It stimulates MPS via the
mammalian target of rapamycin (mTOR) signaling pathway
and is also associated with the release of gluconeogenic pre-
cursors from muscle [38]. Both animal and human models
have demonstrated that leucine ingestion drives and extends
MPS [39, 40]. The leucine trigger or threshold hypothesis
states that the muscle’s intracellular leucine concentration
needs to reach a given threshold to see a robust increase in
MPS following protein consumption [41]. Leucine co-
ingestion in elderly subjects who even consume daily protein
intakes greater than or equal to the RDA has been shown to
enhance rates of MPS [42]. In fact, low protein doses supple-
mented with a high (5.0 g) amount of leucine were shown to
be as effective as high protein doses at stimulating increased
MPS rates [43, 44]. The International Society of Sports
Nutrition (ISSN) recommends that in healthy, exercising indi-
viduals, acute protein doses should contain 0.7–3 g of leucine
and/or a higher relative leucine content, in addition to other
EAAs [45]. It has been demonstrated that supplementation of
leucine with EAAs is associated with improvements in body
composition and nutritional status in many groups with mus-
cle wasting illnesses, like chronic diseases and disuse atrophy
[15, 46]. A recent systemic review supported use of leucine or
leucine-enriched proteins (1.2–6 g leucine/day) to improve
sarcopenia in elderly individuals [47]. Studies have also dem-
onstrated the BCAA enriched diets or total parenteral nutrition
(TPN) have benefited patients with cancer undergoing sur-
gery, sepsis, and burns [48–50]. Rat models have shown that
leucine-stimulated MPS and downstream signaling of the
mTOR pathway at the level of S6K1 is impaired by acute
metabolic acidosis, which is found in many patients in the

ICU; hence, supplementation of leucine may help with ICU-
associated muscle wasting [51]. There have been very few
studies done on specifically leucine administration in the
ICU setting. A recent randomized feasibility study demon-
strated that administering a leucine-enriched EAA supplement
in ICU patients was practical but posed significant barriers to
recruitment and measurement of the chosen outcomes [52].

Hydroxyl β-Methylbutyrate (HMB)

HMB is a transamination product of leucine produced in skel-
etal muscle and has been shown to enhance MPS by its in-
volvement in the mTOR pathway (similar to leucine), and also
attenuates muscle protein breakdown in an insulin-
independent manner [53, 54]. Since upwards of 20 g of leu-
cine is metabolized into 1 g of HMB in muscle cells under
normal physiologic conditions, HMB provides the potential to
affect skeletal muscle turnover more efficiently [55]. HMB
has been studied widely as an ergogenic supplement, and it
has been shown that in healthy adults in conjunction with
resistance training, HMB supplementation augments acute
immune and endocrine responses and enhances training-
induced muscle mass and strength [56–58]. A recent system-
atic review demonstrated that HMBmay have a small positive
impact on fat-free mass in athletes and no significant effect on
body mass or fat mass [59]. In the elderly, HMB supplements
have been proven to preserve muscle mass, but have conflict-
ing evidence on muscle strength and functional performance
[60–62]. There is some evidence that HMB reduces exercise-
induced muscle damage, as evidenced by decrease in indirect
markers like lactate dehydrogenase and creatine kinase [63].
HMB supplementation has also been shown to prevent the
decline in LBM in healthy older adults during 10 days of
bed rest [64]. Animal models have demonstrated that there
are age-related reductions in conversions of leucine to HMB
[65]; hence, supplementation especially to the elderly patients
may be crucial. In the critical care setting, HMB supplemen-
tation remains questionable. A recent trial with daily HMB
complex supplementation (3 g HMB, 14 g arginine, and
14 g glutamine) to ICU patients demonstrated that HMB did
not inhibit muscle volume loss in the acute phase of ICU care
[66]. Previously, a small trial by Hsieh et al. demonstrated
anti-inflammatory and anti-catabolic effects and improvement
in pulmonary function of HMB supplementation in COPD
patients in the ICU [67]. Another trial in trauma ICU patients
demonstrated improved nitrogen balance but no improvement
in muscle proteolysis with HMB supplementation (although a
biomarker with known limitations, 3-MHwas used as the sole
marker for muscle proteolysis) [68]. The value of HMB may
not be in reducing the catabolism seen in critical illness, but in
supporting muscle synthesis to offset muscle loss. HMB is
available readily in enteral formulations enhanced with this
substrate. In summary, HMB is worth further study for
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management of post-ICU cachexia combined with rehabilita-
tion, with potential use in PICS.

Creatine

Creatine is one of the most popular and effective nutritional
supplements in athletes and bodybuilders [69]. Creatine sup-
plementation increases availability of creatine and phospho-
creatine in muscle, and supports anabolism by promoting the
expression of growth factors like insulin growth factor (IGF)-
1 and the phosphorylation of signaling proteins [70]. It has
been proven to improve muscle mass and enhance exercise
capacity in adolescents, adults, and even vulnerable elders and
in conjunction with resistance training can result in greater
adaptations in skeletal muscle than training alone [71–73].
There is conflicting data showing that creatine supplementa-
tion may attenuate muscle atrophy following immobilization
and benefit exercise-related rehabilitation. Two trials from the
early 2000s showed that creatine supplementation improved
losses in muscle mass and strength during immobilization in
healthy volunteers [74–76]; however, a recent trial opposed
this and showed that creatinine loading before and after im-
mobilization did not attenuate muscle loss [77]. It is unclear if
creatine helps with preserving muscle loss, but it may still be
beneficial in supporting muscle mass and strength regain dur-
ing rehabilitation. There is also data showing that creatinemay
be beneficial in muscle disorders like dystrophies, inflamma-
tory myopathies, and cytopathies [78]. There have not been
any studies specifically targeting creatine supplementation in
critically ill patients. The strategy of creatine supplementation
to improve rehabilitation in injured athletes [79] may be rep-
licated in an ICU and post-ICU cohort in future studies. A
combination of 3–10 g/day of creatine and 3 g/day of HMB
supplemented chronically has been shown to have positive
effects on sport performance and body composition in athletes
[80]; a similar combinationmay be useful in critical care given
the ergogenic capabilities of both.

Vitamin D

Vitamin D has varied functions in skeletal muscle, including
calcium homeostasis, cell proliferation and differentiation,
prevention of fatty degeneration, protection against insulin
resistance, and arachidonic acid mobilization [81]. Multiple
studies and systematic reviews have found a significant asso-
ciation between low levels of vitamin D and muscle dysfunc-
tion and decline in physical performance [82, 83]. Vitamin D
has been shown to improve muscle strength in athletes [84,
85]. Multiple nationwide cohort studies have shown an asso-
ciation between low levels of vitamin D and frailty in the
elderly [86–88]. A recent review demonstrated that a combi-
nation of high-quality proteins, leucine, vitamin D, and n-3
PUFA may be beneficial in the prevention of sarcopenia [89].

There have been very few trials of vitamin D supplementation
in the ICU. The largest one, the VITdAL-ICU (Effect of High-
dose Vitamin D3 on Hospital Length of Stay in Critically Ill
Patients with Vitamin D Deficiency) trial, showed no benefits
onmortality in its primary analysis but demonstrated improve-
ment in those patients with severe deficiency (< 12 ng/mL) in
its secondary analysis [90]. A recent meta-analysis of these
trials showed that vitamin D administration did not have a
mortality benefit or improve clinical outcomes [91]. None of
these trials have looked at muscle mass or strength as an out-
come measure. Currently, the only society recommending vi-
tamin D supplementation in ICU patients is ESPEN, which
recommends supplementing severely deficient patients with
levels < 12.5 ng/mL within the first week after ICU admission
[8, 92]. However, deriving from its benefits in the elderly and
on sarcopenia, vitamin D supplementation may play a useful
role in alleviating muscle loss both during and post-critical
care hospitalization.

Polyunsaturated Fatty Acids (PUFA)

Ω3-PUFAs like eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) have been shown to stimulate
MPS via increased activation of the mTOR-p70s6k signaling
pathway and reduction of insulin resistance and anti-
inflammatory effects that support anabolic processes [93,
94•]. Animal models have demonstrated that fish oil, which
contains a high percentage of PUFAs, stimulates anabolic
signaling and muscle protein mass [95, 96]. Studies have
shown that PUFA intake promotes muscle anabolism in
healthy young and middle-aged adults as well as the elderly
[93, 97–99]. Higher intake or increased plasma/RBC levels of
omega-3 fatty acids (Ω-3 FAs) are associated with higher
muscle mass, strength, and quality and physical performance
[94•], and Ω-3 FAs are being studied as a low-cost, low-risk
sports performance enhancer [100]. Ω-3 FA supplementation
has been shown to augment improved muscle function and
quality achieved by resistance training in older women, but
not in men [101]. Supplementation with Ω3-PUFAs has been
shown to attenuate sarcopenia in advanced cancer, aging, and
chronic diseases [102–104]. Additionally, given their anti-
inflammatory properties, PUFAsmay have a role in protecting
against inflammation-induced cachexia and PICS. According
to a recent systemic review, a dose of 3 g/day of EPA +DHA
is beneficial for muscle health in older adults [89]. Although
there have been no trials on solely PUFA supplementation in
critically ill patients, it appears to be a promising area, espe-
cially when combined with other supplements.

Anabolic Steroids

Anabolic steroids in supraphysiologic doses have been shown
to increase bodyweight, fat-free mass, and muscle strength in
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healthy people [105] and hence have been used and abused by
bodybuilders and athletes [106]. However, the obvious meth-
od to counteract catabolism generated in the ICU is the use of
anabolic therapies. Several anabolic adjuncts have been stud-
ied, especially in patients with burns who are known to have
hypercatabolic responses to injury. One of the most effica-
cious of these is oxandrolone, a synthetic steroid with en-
hanced anabolic activity and minimal androgenic activity. In
murine models of severe burn injury, oxandrolone-treated an-
imals demonstrate improved organ function, attenuated in-
flammatory response, and accelerated wound healing [107].
Oxandrolone has been widely studied in burn patients and has
been shown to decrease catabolism and weight loss, improve
MPS and wound healing, and decrease mortality and length of
stay in this cohort both during and post-hospitalization
[108–110••]. Long-term supplementation of oxandrolone
leads to improved lean body mass, bone mineral content,
and muscle strength in burn patients [111]. Other anabolic
steroids have also been found to improve lean body mass
and muscle strength in various cohorts including patients with
HIV, chronic obstructive pulmonary disease patients, and pa-
tients on hemodialysis [112]. Oxandrolone is an oral supple-
ment and generally well tolerated, and although there are rec-
ommendations to monitor hepatic function during administra-
tion, rises in aminotransferases have been found to be transient
[113, 114]. These factors certainly demonstrate an ease in
administration. The timing of administration may be a little
more controversial; however, initiating treatment after the ini-
tial inflammatory phase, in the so-called recovery phase of
critical illness, may be most appropriate. This can be signaled
by clinical improvement, absent need for organ support, and
decreasing inflammatory markers. Small case series have used
anabolic steroids with great success in patients with profound
critical illness myopathy and weight loss who were already
receiving appropriate nutritional support and physiotherapy
[115]. Albeit controversial in the world of competitive sports,
anabolic steroids may be one of the most promising therapies
in post-ICU care.

Resistance Training

High-intensity resistance training has been shown to be very
effective in enhancing muscle strength and performance in
athletes [116]. Extensive research has been demonstrated that
resistance training even in regular healthy adults increases
muscle mass and MPS [117]. In addition, resistance training
has been shown to restore bed rest-induced muscle loss and
improve strength and in fact has been shown to prevent car-
diovascular and skeletal muscle deconditioning during strict
bed rest [118, 119]. Acute hospitalization in elderly patients
leads to functional decline, but early exercise and rehabilita-
tion protocols with resistance training have been shown to
prevent atrophy [120]. Unfortunately, studies exploring early

physical and occupational therapy in the ICU have had mixed
results, with some showing improved length of stay and func-
tional outcomes at discharge [121, 122], while other studies
and meta-analyses show no change in these parameters
[123–125]. Even aggressive post-ICU rehabilitation shows
mixed results [126, 127]. The RECOVER trial used a multi-
faceted approach to post-ICU rehabilitation, including in-
creased physical and nutritional therapy and information
provision—none of which improved physical recovery or
health-related quality of life, but improved patient satisfaction
with recovery [127]. Studies looking at electrical muscle stim-
ulation combined with rehabilitation have also not been effec-
tive [128, 129]. This might be because of several challenges
faced while implementing these programs in critically ill
patients—weaning sedation effectively, correct patient selec-
tion, inadequate nutritional delivery [130], and poor standard-
ization with regard to timing of initiation. Another consider-
ation before widespread use can be recommended is the over-
all cost-effectiveness of running these programs without prov-
en improvement in functional outcomes. Participatory exer-
cise is better than passive exercise, all of which is better than
nerve stimulation; also in theory, early exercise may be bene-
ficial—hence, resistance training in the ICU needs to be ex-
plored in terms of timing, patient selection, and therapy type.

Phosphatidic Acid (PA)

PA is a phospholipid that has been shown to stimulate the
mTOR pathway via activation of the substrate S6 kinase and
hence influence MPS in vitro [131–133]. However, there are
conflicting results in human studies; a recent review analyzed
5 studies with PA supplementation in resistance-trained men
and found mixed evidence of influence on muscle mass and
strength, with 3 trials showing positive results and the latest
trial showing no effects of PA supplementation [134, 135]. A
trial that used lower than the standard dose of 750 mg of PA
also failed to show results [136]. There have been no trials on
PA in the elderly, patients with sarcopenia, or ICU patients.
PA presents a potentially useful therapeutic option for man-
agement of cachexia but needs much further study to be rec-
ommended at this time.

Arginine

Arginine is a conditionally essential amino acid that has mul-
tiple functions with ergogenic potential. It stimulates secretion
of growth hormone from the anterior pituitary due to suppres-
sion of somatostatin; it is one of the AAs involved in the
synthesis of creatine and it augments nitric oxide production
[137]. However, very few studies have examined arginine
supplementation in humans on muscle metabolism and incon-
clusive results have been observed with respect to improve-
ments in exercise performance and muscle mass [138, 139]. A

Curr Nutr Rep



recent trial reported no improvement in muscle function with
arginine supplementation during recovery following high-
intensity resistance exercise [140]. Arginine supplements have
controversial use as immune-modulating nutrition in the ICU,
with current recommendations recommending use in surgical
ICU, but not medical ICU patients [141]. Although its func-
tions seem promising in the management of cachexia and
muscle loss, more research is required before it can be recom-
mended as a supplement for muscle preservation in critically
ill patients.

Adenosine-5′-Triphosphate (ATP)

Adenosine-5′-triphosphate (ATP) is a purine nucleotide which
serves as the primary source of intracellular energy and per-
forms extracellular functions like increasing skeletal muscle
calcium permeability and vasodilation. It is currently being
investigated as an ergogenic aid, as chronic ATP supplemen-
tation minimizes exercise-induced drops in ATP levels as it
increases the capacity of erythrocytes to synthesize ATP with-
out increasing resting concentrations in the plasma [142].
Human trials thus far have focused on muscular power and
post-exercise hemodynamic and autonomic parameters during
single bouts of exercise and have found positive results [142,
143]. Only one trial has looked at chronic (12 weeks) supple-
mentation during a resistance-training program in resistance-
trained populations and found that supplementation may en-
hance muscular adaptations [144]. Given the limited data, it is
prudent to wait for more studies and trials on different popu-
lations before attempting to supplement ATP in the ICU
population.

Other Considerations

Several anabolic adjuncts are under study for patients with
hypercatabolic states and cachexia. These include intensive
insulin therapy, propranolol, testosterone, metformin, GLP-
1, and PPAR agonists. Intensive insulin therapy has been
shown to be protective for ICU-acquired weakness, both from
achieving euglycemia and insulin-mediated mRNA expres-
sion of glucose transporter-4 [145]. Propranolol reduces
burn-induced proteolysis and increases muscle anabolism
and thus can be used as an anabolic adjunct [146].
Testosterone acts as an anabolic stimulus to skeletal muscle
as is evidenced by abuse by bodybuilders, and trials have used
them in patients with burns to decrease catabolism with prom-
ising results [147]. By inducing adenosine monophosphate-
activated protein kinase (AMPK), metformin has been shown
to inhibit the production of reactive oxygen species and pro-
inflammatory cytokines and may be protective in critical ill-
ness [148]. GLP-1 agonists are also being explored in the ICU,
given that GLP-1 has positive actions on the myocardium and
vasculature as well as improving glycemic control with a low

risk of hypoglycemia [149]. Activation of PPAR-γmay atten-
uate proinflammatory cytokines and apoptosis and hence be
used in catabolic states [150]. These therapies hold some
promise in critical illness.

Conclusion

Survivors of critical illness are faced with severe muscle loss
and catabolic processes, both during and after their stay in the
ICU, which leaves them with a reduced quality of life post-
hospitalization. Several lessons can be learned from athletes
and bodybuilders and extrapolated to improving muscle
mass in critically ill patients. High protein intake, with a
minimum goal of 2.0 g/kg/day, is key, using a whey-
containing protein source early in the acute and imme-
diate post-acute phases, and then adding HMB, creatine,
or BCAAs with resistance training in early recovery
might be an optimum solution. Anti-inflammatory
agents like PUFAs may be used to reduce inflammation
in early phases through to recovery phase. Other ana-
bolic interventions like steroids may be used as adjuncts
in the recovery phase. Many interventions like ATP,
PA, PPAR agonists, or GLP-1 are yet in the earlier
phases of research and not ready for widespread use
in critically ill patients.

Athletes and bodybuilders are afforded the opportunity to
focus on a singular issue—building muscle mass, strength,
and function—and hence, results obtained in this cohort are
dramatic. Intensivists have to manage multiple aspects of crit-
ical care (multiorgan failure, sepsis, metabolic derangements,
etc.), and their attention and priorities become divided.
Consequently, although important, nutrition and prevention
of muscle loss too often is assigned a lower priority. This
problem is inconclusive studies for many of the supplements
and ergogenic aids in the ICU. Trials with these supplements
have been designed with outcomes like ICU and hospital
length of stay, mortality, and infection but not as part of an
aggressive strategy to promote muscle mass and function.
Other factors contributing to inconclusive results from these
trials include patient heterogeneity and broad patient selection
criteria, disparate timing of interventions, imprecise objective
parameters and study endpoints, and evaluating complex in-
terventions which are difficult to execute in an ICU setting.
Whether aggressive nutritional support and use of supple-
ments is actually utilized may be more a function of the cul-
ture, leadership, and values of the ICU team of physicians, and
how much priority they place on these issues. With more
research yielding definitive results, and incorporation into
guidelines and institutionalized protocols, the lessons learned
from athletes and bodybuilders may be incorporated to im-
prove outcomes for survivors of critical illness.
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